
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118247/publications.pdf Version: 2024-02-01

Δητονίο Ι Ριέρικ

#	Article	IF	CITATIONS
1	Biological activition of hydrogen. Nature, 1997, 385, 126-126.	13.7	421
2	The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1491-1508.	1.9	404
3	Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nature Chemical Biology, 2012, 8, 125-132.	3.9	342
4	Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11775-11780.	3.3	279
5	MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity. Science, 2012, 337, 195-199.	6.0	255
6	A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. FEBS Journal, 1998, 258, 572-578.	0.2	243
7	Carbon Monoxide and Cyanide as Intrinsic Ligands to Iron in the Active Site of [NiFe]-Hydrogenases. Journal of Biological Chemistry, 1999, 274, 3331-3337.	1.6	228
8	Anaerobic Initial Reaction of n -Alkanes in a Denitrifying Bacterium: Evidence for (1-Methylpentyl)succinate as Initial Product and for Involvement of an Organic Radical in n -Hexane Metabolism. Journal of Bacteriology, 2001, 183, 1707-1715.	1.0	228
9	The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron–sulphur proteins. EMBO Journal, 2004, 23, 2105-2115.	3.5	196
10	Crystal Structures of Nucleotide-Free and Glutathione-Bound Mitochondrial ABC Transporter Atm1. Science, 2014, 343, 1137-1140.	6.0	195
11	Synthesis and Uptake of the Compatible Solutes Ectoine and 5-Hydroxyectoine by <i>Streptomyces coelicolor</i> A3(2) in Response to Salt and Heat Stresses. Applied and Environmental Microbiology, 2008, 74, 7286-7296.	1.4	189
12	Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I. Molecular and Cellular Biology, 2009, 29, 6059-6073.	1.1	184
13	Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nature Chemical Biology, 2010, 6, 758-765.	3.9	176
14	The Cfd1–Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nature Chemical Biology, 2007, 3, 278-286.	3.9	166
15	The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO Journal, 2008, 27, 1736-1746.	3.5	158
16	Maturation of cytosolic and nuclear iron–sulfur proteins. Trends in Cell Biology, 2014, 24, 303-312.	3.6	158
17	The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. European Journal of Cell Biology, 2015, 94, 280-291.	1.6	158
18	The eukaryotic P loop NTPase Nbp35: An essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3266-3271.	3.3	156

ANTONIO J PIERIK

#	Article	IF	CITATIONS
19	Nitric Oxide Binding to the Ferri- and Ferroheme States of Nitrophorin 1, a Reversible NO-Binding Heme Protein from the Saliva of the Blood-Sucking Insect,Rhodnius prolixus. Journal of the American Chemical Society, 1999, 121, 128-138.	6.6	153
20	Mechanisms of iron–sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 652-667.	1.9	149
21	Human CIA2A-FAM96A and CIA2B-FAM96B Integrate Iron Homeostasis and Maturation of Different Subsets of Cytosolic-Nuclear Iron-Sulfur Proteins. Cell Metabolism, 2013, 18, 187-198.	7.2	144
22	Specialized Function of Yeast Isa1 and Isa2 Proteins in the Maturation of Mitochondrial [4Fe-4S] Proteins. Journal of Biological Chemistry, 2011, 286, 41205-41216.	1.6	143
23	Osmotically Induced Synthesis of the Compatible Solute Hydroxyectoine Is Mediated by an Evolutionarily Conserved Ectoine Hydroxylase. Journal of Biological Chemistry, 2007, 282, 31147-31155.	1.6	134
24	Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). FEBS Journal, 1992, 209, 63-72.	0.2	132
25	Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. FEBS Journal, 1993, 212, 51-61.	0.2	121
26	The Essential WD40 Protein Cia1 Is Involved in a Late Step of Cytosolic and Nuclear Iron-Sulfur Protein Assembly. Molecular and Cellular Biology, 2005, 25, 10833-10841.	1.1	118
27	Acryloyl-CoA reductase from Clostridium propionicum. FEBS Journal, 2003, 270, 902-910.	0.2	111
28	New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biological Chemistry, 2005, 386, 981-8.	1.2	110
29	S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. FEBS Journal, 1991, 195, 505-516.	0.2	108
30	Biochemical Characterisation and Genetic Analysis of Aureocin A53, a New, Atypical Bacteriocin from Staphylococcus aureus. Journal of Molecular Biology, 2002, 319, 745-756.	2.0	104
31	Human Nbp35 Is Essential for both Cytosolic Iron-Sulfur Protein Assembly and Iron Homeostasis. Molecular and Cellular Biology, 2008, 28, 5517-5528.	1.1	98
32	Determination of the redox properties of the Rieske [2Fe-2S] cluster of bovine heart bc1 complex by direct electrochemistry of a water-soluble fragment. FEBS Journal, 1992, 208, 685-691.	0.2	97
33	A Bridging [4Fe-4S] Cluster and Nucleotide Binding Are Essential for Function of the Cfd1-Nbp35 Complex as a Scaffold in Iron-Sulfur Protein Maturation. Journal of Biological Chemistry, 2012, 287, 12365-12378.	1.6	91
34	Analysis of iron–sulfur protein maturation in eukaryotes. Nature Protocols, 2009, 4, 753-766.	5.5	87
35	Multi-frequency EPR and high-resolution Mossbauer spectroscopy of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Characterization of a supercluster and superspin model protein. FEBS Journal, 1992, 206, 705-719.	0.2	85
36	Characterization of the Photoconversion of Green Fluorescent Protein with FTIR Spectroscopy. Biochemistry, 1998, 37, 16915-16921.	1.2	85

3

#	Article	IF	CITATIONS
37	Sodium Ion Pumps and Hydrogen Production in Glutamate Fermenting Anaerobic Bacteria. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 105-119.	1.0	85
38	A spectroelectrochemical study of factor F430 nickel(II/I) from methanogenic bacteria in aqueous solution. Journal of the American Chemical Society, 1993, 115, 5651-5656.	6.6	83
39	SufU Is an Essential Iron-Sulfur Cluster Scaffold Protein in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 1643-1651.	1.0	83
40	CryB from <i>Rhodobacter sphaeroides</i> : a unique class of cryptochromes with new cofactors. EMBO Reports, 2012, 13, 223-229.	2.0	82
41	Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. Biochemical Journal, 2010, 425, 207-218.	1.7	77
42	Purification and biochemical characterization of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). FEBS Journal, 1992, 206, 697-704.	0.2	75
43	Structure of the Yeast WD40 Domain Protein Cia1, a Component Acting Late in Iron-Sulfur Protein Biogenesis. Structure, 2007, 15, 1246-1257.	1.6	74
44	The Substrate Radical of Escherichia coli Oxygen-independent Coproporphyrinogen III Oxidase HemN. Journal of Biological Chemistry, 2006, 281, 15727-15734.	1.6	73
45	Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. FEBS Journal, 1993, 212, 237-245.	0.2	72
46	The third subunit of desulfoviridin-type dissimilatory sulfite reductases. FEBS Journal, 1992, 205, 111-115.	0.2	69
47	4-Hydroxyphenylacetate Decarboxylases:Â Properties of a Novel Subclass of Glycyl Radical Enzyme Systemsâ€. Biochemistry, 2006, 45, 9584-9592.	1.2	69
48	The Essential Cytosolic Iron-Sulfur Protein Nbp35 Acts without Cfd1 Partner in the Green Lineage. Journal of Biological Chemistry, 2008, 283, 35797-35804.	1.6	68
49	Novel electron paramagnetic resonance signals from an Fe/S protein containing six iron atoms. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 4083.	1.0	64
50	Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proceedings of the United States of America, 2006, 103, 12341-12346.	3.3	64
51	Characterization of the active site of a hydrogen sensor fromAlcaligenes eutrophus. FEBS Letters, 1998, 438, 231-235.	1.3	63
52	An allylic ketyl radical intermediate in clostridial amino-acid fermentation. Nature, 2008, 452, 239-242.	13.7	63
53	The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. FEBS Journal, 2000, 267, 3874-3884.	0.2	62
54	The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. ELife, 2015, 4, e08231.	2.8	62

#	Article	IF	CITATIONS
55	Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeonArchaeoglobus profundus. FEBS Journal, 2004, 271, 1106-1116.	0.2	61
56	Biochemical Reconstitution and Spectroscopic Analysis of Iron–Sulfur Proteins. Methods in Enzymology, 2018, 599, 197-226.	0.4	61
57	The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron-sulfur clusters. Biochemistry, 1993, 32, 10323-10330.	1.2	60
58	A Photolyase-Like Protein from Agrobacterium tumefaciens with an Iron-Sulfur Cluster. PLoS ONE, 2011, 6, e26775.	1.1	59
59	The F420-Reducing [NiFe]-Hydrogenase Complex from Methanothermobacter marburgensis, the First X-ray Structure of a Group 3 Family Member. Journal of Molecular Biology, 2014, 426, 2813-2826.	2.0	58
60	The Mo-Se active site of nicotinate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11055-11060.	3.3	54
61	Difference Fourier Transform Infrared Evidence for Ester Bonds Linking the Heme Group in Myeloperoxidase, Lactoperoxidase, and Eosinophil Peroxidase. Journal of the American Chemical Society, 1997, 119, 11542-11543.	6.6	52
62	Bacterial ApbC Can Bind and Effectively Transfer Ironâ^'Sulfur Clusters. Biochemistry, 2008, 47, 8195-8202.	1.2	52
63	Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum. PLoS Biology, 2018, 16, e2003892.	2.6	51
64	EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. FEBS Journal, 1991, 202, 1291-1297.	0.2	50
65	Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Molecular Microbiology, 2002, 44, 49-60.	1.2	50
66	Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m -xylene metabolism. Archives of Microbiology, 2004, 181, 155-162.	1.0	49
67	trans/cis (Z/E) photoisomerization of the chromophore of photoactive yellow protein is not a prerequisite for the initiation of the photocycle of this photoreceptor protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7396-7401.	3.3	47
68	Crucial Role of Conserved Cysteine Residues in the Assembly of Two Ironâ^'Sulfur Clusters on the CIA Protein Nar1. Biochemistry, 2009, 48, 4946-4958.	1.2	46
69	The Basic Leucine Zipper Stress Response Regulator Yap5 Senses High-Iron Conditions by Coordination of [2Fe-2S] Clusters. Molecular and Cellular Biology, 2015, 35, 370-378.	1.1	46
70	Calcium-independent phospholipase A2 in rat tissue cytosols. Lipids and Lipid Metabolism, 1988, 962, 345-353.	2.6	45
71	Adenosine Triphosphate-Induced Electron Transfer in 2-Hydroxyglutaryl-CoA Dehydratase fromAcidaminococcus fermentansâ€. Biochemistry, 2002, 41, 5873-5882.	1.2	44
72	Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. FEBS Journal, 1991, 195, 385-391.	0.2	43

#	Article	IF	CITATIONS
73	The Ether-Cleaving Methyltransferase System of the Strict Anaerobe <i>Acetobacterium dehalogenans</i> : Analysis and Expression of the Encoding Genes. Journal of Bacteriology, 2009, 191, 588-599.	1.0	42
74	Requirements of the cytosolic iron–sulfur cluster assembly pathway in Arabidopsis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120259.	1.8	42
75	The primary structure of a protein containing a putative [6Fe-6S] prismane cluster from Desulfovibrio vulgaris (Hildenborough). FEBS Journal, 1992, 208, 435-442.	0.2	41
76	Substrate Specificity of 2-Hydroxyglutaryl-CoA Dehydratase fromClostridium symbiosum: Toward a Bio-Based Production of Adipic Acid. Biochemistry, 2011, 50, 3540-3550.	1.2	40
77	Characterization of a New Thermophilic Spore Photoproduct Lyase from Geobacillus stearothermophilus (SplG) with Defined Lesion Containing DNA Substrates. Journal of Biological Chemistry, 2006, 281, 36317-36326.	1.6	36
78	Structure of the Kti11/Kti13 Heterodimer and Its Double Role in Modifications of tRNA and Eukaryotic Elongation Factor 2. Structure, 2015, 23, 149-160.	1.6	36
79	A two [4Fe-4S]-cluster-containing ferredoxin as an alternative electron donor for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Archives of Microbiology, 2003, 179, 197-204.	1.0	35
80	Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. FEBS Journal, 2004, 271, 2225-2230.	0.2	35
81	The conserved protein Dre2 uses essential [2Fe–2S] and [4Fe–4S] clusters for its function in cytosolic iron–sulfur protein assembly. Biochemical Journal, 2016, 473, 2073-2085.	1.7	35
82	Nar1p, a conserved eukaryotic protein with similarity to Fe-only hydrogenases, functions in cytosolic iron-sulphur protein biogenesis. Biochemical Society Transactions, 2005, 33, 86-89.	1.6	32
83	Intramolecular N→B Coordination as a Stabilizing Scaffold for π-Conjugated Radical Anions with Tunable Redox Potentials. Organometallics, 2017, 36, 2527-2535.	1.1	32
84	Phthaloylâ€coenzyme A decarboxylase from <i>Thauera chlorobenzoica</i> : the prenylated flavinâ€; K ⁺ â€and Fe ²⁺ â€dependent key enzyme of anaerobic phthalate degradation. Environmental Microbiology, 2017, 19, 3734-3744.	1.8	27
85	Identification and Characterization of a Novel-type Ferric Siderophore Reductase from a Gram-positive Extremophile. Journal of Biological Chemistry, 2011, 286, 2245-2260.	1.6	26
86	Overproduction of prismane protein in Desulfovibrio vulgaris (Hildenborough): evidence for a second S = 1/2-spin system in the one-electron reduced state. FEBS Journal, 1992, 210, 983-988.	0.2	23
87	Cytosolic ironâ€sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream <scp> <i>T</i> </scp> <i>rypanosoma brucei</i> . Molecular Microbiology, 2014, 93, 897-910.	1.2	23
88	Searching for Intermediates in the Carbon Skeleton Rearrangement of 2-Methyleneglutarate to (R)-3-Methylitaconate Catalyzed by Coenzyme B12-Dependent 2-Methyleneglutarate Mutase fromEubacterium barkeriâ€. Biochemistry, 2005, 44, 10541-10551.	1.2	21
89	Homologous expression of the <i>nrdF</i> gene of <i>Corynebacterium ammoniagenes</i> strain ATCC 6872 generates a manganeseâ€metallocofactor (R2F) and a stable tyrosyl radical (Y [•]) involved in ribonucleotide reduction. FEBS Journal, 2010, 277, 4849-4862.	2.2	21
90	Apd1 and Aim32 Are Prototypes of Bishistidinyl-Coordinated Non-Rieske [2Fe–2S] Proteins. Journal of the American Chemical Society, 2019, 141, 5753-5765.	6.6	21

#	Article	IF	CITATIONS
91	Identification of FeS clusters in the glycyl-radical enzyme benzylsuccinate synthase via EPR and M¶ssbauer spectroscopy. Journal of Biological Inorganic Chemistry, 2012, 17, 49-56.	1.1	20
92	Biochemical Characterization of Molybdenum Cofactor-free Nitrate Reductase from Neurospora crassa. Journal of Biological Chemistry, 2013, 288, 14657-14671.	1.6	20
93	Synthesis of 13C-labeled γ-hydroxybutyrates for EPR studies with 4-hydroxybutyryl-CoA dehydratase. Bioorganic Chemistry, 2005, 33, 53-66.	2.0	19
94	Electron paramagnetic resonance (EPR) spectroscopy of the stable-free radical in the native metallo-cofactor of the manganese-ribonucleotide reductase (Mn-RNR) ofCorynebacterium glutamicum. Free Radical Research, 2009, 43, 943-950.	1.5	17
95	Rotation of theexo-Methylene Group of (R)-3-Methylitaconate Catalyzed by Coenzyme B12-Dependent 2-Methyleneglutarate Mutase fromEubacterium barkeri. Journal of the American Chemical Society, 2002, 124, 14039-14048.	6.6	16
96	Dihydroorotate dehydrogenase from <i>Saccharomyces cerevisiae</i> : spectroscopic investigations with the recombinant enzyme throw light on catalytic properties and metabolism of fumarate analogues. FEMS Yeast Research, 2007, 7, 897-904.	1.1	16
97	Evidence for an oxygen-sensitive iron–sulfur cluster in an immature large subunit species of Escherichia coli [NiFe]-hydrogenase 2. Biochemical and Biophysical Research Communications, 2012, 424, 158-163.	1.0	16
98	Low potential enzymatic hydride transfer via highly cooperative and inversely functionalized flavin cofactors. Nature Communications, 2019, 10, 2074.	5.8	14
99	Synthesis of Enantiomerically-Pure [13C]Aristeromycylcobalamin and Its Reactivity in Dioldehydratase, Glyceroldehydratase, Ethanolamine Ammonia-Lyase and Methylmalonyl-CoA Mutase Reactions. Chemistry - A European Journal, 2003, 9, 652-660.	1.7	13
100	4-Hydroxyphenylacetate decarboxylase activating enzyme catalyses a classical S-adenosylmethionine reductive cleavage reaction. Journal of Biological Inorganic Chemistry, 2013, 18, 633-643.	1.1	13
101	Substrate-Induced Radical Formation in 4-Hydroxybutyryl Coenzyme A Dehydratase from Clostridium aminobutyricum. Applied and Environmental Microbiology, 2015, 81, 1071-1084.	1.4	13
102	Turn-on fluorescence sensors based on dynamic intramolecular N→B-coordination. Organic Chemistry Frontiers, 2020, 7, 1437-1452.	2.3	13
103	Crystal Structure and Putative Mechanism of 3-Methylitaconate-Δ-isomerase from Eubacterium barkeri. Journal of Molecular Biology, 2009, 391, 609-620.	2.0	12
104	Cyclopentadienide Ligand Cp ^{C–} Possessing Intrinsic Helical Chirality and Its Ferrocene Analogues. Organometallics, 2015, 34, 5374-5382.	1.1	12
105	Glycine Betaine and Ectoine Are the Major Compatible Solutes Used by Four Different Halophilic Heterotrophic Ciliates. Microbial Ecology, 2019, 77, 317-331.	1.4	12
106	Structural and Kinetic Properties of a β-Hydroxyacid Dehydrogenase Involved in Nicotinate Fermentation. Journal of Molecular Biology, 2008, 382, 802-811.	2.0	11
107	ATP-Dependent Electron Activation Module of Benzoyl-Coenzyme A Reductase from the Hyperthermophilic Archaeon Ferroglobus placidus. Biochemistry, 2016, 55, 5578-5586.	1.2	11
108	A Complex of 2â€Hydroxyisocaproylâ€Coenzyme A Dehydratase and its Activator from <i>Clostridium difficile</i> Stabilized by Aluminium Tetrafluorideâ€Adenosine Diphosphate. ChemPhysChem, 2010, 11, 1307-1312.	1.0	10

#	Article	IF	CITATIONS
109	A noncanonical cytochrome <i>c</i> stimulates calcium binding by PilY1 for type IVa pili formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
110	Mechanism-Based Inactivation of Coenzyme B12-Dependent 2-Methyleneglutarate Mutase by (Z)-Glutaconate and Buta-1,3-diene-2,3-dicarboxylate. European Journal of Inorganic Chemistry, 2006, 2006, 3622-3626.	1.0	9
111	Axial Coordination and Reduction Potentials of the Sixteen Hemes in High-Molecular-Mass Cytochrome c from Desulfovibrio Vulgaris (Hildenborough). FEBS Journal, 1994, 225, 311-319.	0.2	8
112	Butâ€3â€eneâ€1,2â€diol: A Mechanismâ€Based Active Site Inhibitor for Coenzyme B ₁₂ â€Dependen Glycerol Dehydratase. ChemBioChem, 2008, 9, 2268-2275.	t 1.3	7
113	The Crystal Structure of Enamidase: A Bifunctional Enzyme of the Nicotinate Catabolism. Journal of Molecular Biology, 2008, 384, 837-847.	2.0	7
114	Roles of the Nfu Fe–S targeting factors in the trypanosome mitochondrion. International Journal for Parasitology, 2016, 46, 641-651.	1.3	7
115	Si-face stereospecificity at C5 of coenzyme F420 for F420H2 oxidase from methanogenic Archaea as determined by mass spectrometry. FEBS Journal, 2005, 272, 5337-5342.	2.2	6
116	Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochemical Journal, 2021, 478, 3281-3295.	1.7	6
117	The ferredoxin-like domain of the activating enzyme is required for generating a lasting glycyl radical in 4-hydroxyphenylacetate decarboxylase. Journal of Biological Inorganic Chemistry, 2014, 19, 1317-1326.	1.1	5
118	Influence of the fusion of two subunits of the F 420 -non-reducing hydrogenase of Methanococcus voltae on its biochemical properties. Archives of Microbiology, 2000, 174, 375-378.	1.0	2
119	Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLoS Pathogens, 2018, 14, e1007326.	2.1	2
120	Phenothiazine electrophores immobilized on periodic mesoporous organosilicas by ion exchange. New Journal of Chemistry, 2019, 43, 16396-16410.	1.4	2
121	Characterization of Mycobacterium tuberculosis ferredoxin with Mössbauer spectroscopy. Hyperfine Interactions, 2019, 240, 1.	0.2	1
122	Editorial overview: Nine short stories of metals in biology. Current Opinion in Chemical Biology, 2017, 37, vi-vii.	2.8	0