Cemil Alkan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118168/publications.pdf

Version: 2024-02-01

76 papers 5,014 citations

36 h-index 70 g-index

76 all docs

76 docs citations

76 times ranked 2720 citing authors

#	Article	IF	CITATIONS
1	Developing of thermal energy storing visual textile temperature indicators based on reversible color change. Journal of Industrial Textiles, 2022, 51, 1964S-1988S.	1.1	5
2	Development of reversibly color changing textile materials by applying some thermochromic microcapsules containing different color developers. Journal of the Textile Institute, 2022, 113, 2159-2168.	1.0	6
3	Novel ureaâ€based compounds as <scp>solidâ€solid</scp> phase change materials: 1,3â€bisstearoylurea and 1,1,3,3â€tetrastearoylurea for thermal energy storage applications. International Journal of Energy Research, 2022, 46, 20600-20610.	2.2	4
4	Manufacturing surface active shell and bisphenol A free thermochromic acrylic microcapsules for textile applications. International Journal of Energy Research, 2021, 45, 7018-7037.	2.2	22
5	Synthesis of thermally protective PET–PEG multiblock copolymers as food packaging materials. Polymers and Polymer Composites, 2021, 29, S1125-S1133.	1.0	3
6	Preparation of poly(methyl methacrylateâ€ <scp><i>co</i></scp> â€ethylene glycol) Tj ETQq0 0 0 rgBT /Overlock 1 their application to cotton fabrics. Journal of Applied Polymer Science, 2020, 137, 48815.	.0 Tf 50 54 1.3	17 Td (dimet 19
7	Poly(ethylene glycol)s grafted celluloses as solid–solid phase change materials for different thermal energy storage application temperatures and through isophorone linkage. Journal of Thermal Analysis and Calorimetry, 2020, 146, 1511.	2.0	5
8	Cinnamic acid decreases periodontal inflammation and alveolar bone loss in experimental periodontitis. Journal of Periodontal Research, 2020, 55, 676-685.	1.4	21
9	Thermal energy storage properties of polyethylene glycol grafted styrenic copolymer as novel solidâ€solid phase change materials. International Journal of Energy Research, 2020, 44, 3976-3989.	2.2	27
10	Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes. Materials Chemistry and Physics, 2020, 252, 123162.	2.0	22
11	Poly(ethylene-co-1-tetradecylacrylate) and poly(ethylene-co-1-octadecylacrylate) copolymers as novel solid–solid phase change materials for thermal energy storage. Polymer Bulletin, 2019, 76, 2021-2039.	1.7	6
12	Poly(methyl methacrylate-co-ethylene glycole dimethacrylate-co-acrylamide)/N-Octadecane microparticles for thermal energy storage. Solar Energy Materials and Solar Cells, 2019, 193, 253-258.	3.0	9
13	Poly(styrene-co-divinylbenzene-co-acrylamide)/n-octadecane microencapsulated phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 2019, 198, 5-10.	3.0	27
14	Poly(styreneâ€coâ€maleic anhydride)â€ <i>graft</i> å€fatty acids as novel solid–solid PCMs for thermal energy storage. Polymer Engineering and Science, 2019, 59, E337.	1.5	16
15	Developing a poly(ethylene glycol)/cellulose phase change reactive composite for cooling application. Solar Energy Materials and Solar Cells, 2019, 191, 345-349.	3.0	34
16	Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell. Solar Energy Materials and Solar Cells, 2019, 193, 1-6.	3.0	66
17	Development of thermo-regulating fabrics using PCM microcapsules with poly(methyl) Tj ETQq1 1 0.784314 rgBT of Clothing Science and Technology, 2019, 31, 65-79.	/Overlock 0.5	10 Tf 50 10
18	Preparation, Characterization and Thermal Energy Storage Properties of Micro/Nano Encapsulated Phase Change Material with Acrylic-Based Polymer. Polymer Science - Series B, 2018, 60, 58-68.	0.3	16

#	Article	IF	CITATIONS
19	Microencapsulated n -alkane eutectics in polystyrene for solar thermal applications. Solar Energy, 2018, 160, 32-42.	2.9	57
20	Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage. Fibers and Polymers, 2018, 19, 660-669.	1.1	51
21	Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules. Journal of the Textile Institute, 2017, 108, 30-41.	1.0	56
22	Polystyrene microcapsules with palmitic-capric acid eutectic mixture as building thermal energy storage materials. Energy and Buildings, 2017, 150, 376-382.	3.1	69
23	Thermal energy storage characteristics of poly(styrene-co-maleic anhydride)-graft-PEG as polymeric solid–solid phase change materials. Solar Energy Materials and Solar Cells, 2017, 161, 219-225.	3.0	79
24	Comparison of Microencapsulated Phase Change Materials Prepared at Laboratory Containing the Same Core and Different Shell Material. Applied Sciences (Switzerland), 2017, 7, 723.	1.3	20
25	IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and Processing of PCMs, TCMs and Sorption Materials. Energy Procedia, 2016, 91, 207-217.	1.8	14
26	Polyvinyl Alcohol-salt Hydrate Mixtures as Passive Thermal Energy Storage Systems. Energy Procedia, 2016, 91, 1012-1017.	1.8	9
27	Thermal energy storage characteristics of micro-nanoencapsulated heneicosane and octacosane with poly(methylmethacrylate) shell. Journal of Microencapsulation, 2016, 33, 221-228.	1.2	32
28	Synthesis and characterization of micro/nano capsules of PMMA/capric–stearic acid eutectic mixture for low temperature-thermal energy storage in buildings. Energy and Buildings, 2015, 90, 106-113.	3.1	104
29	Synthesis of poly(methyl methacrylate-co-acrylic acid)/ <i>n</i> -eicosane microcapsules for thermal comfort in textiles. Textile Reseach Journal, 2015, 85, 2051-2058.	1.1	41
30	Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Solar Energy, 2015, 115, 195-203.	2.9	122
31	Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage. Energy Conversion and Management, 2014, 86, 614-621.	4.4	111
32	Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs. International Journal of Energy Research, 2014, 38, 1478-1491.	2.2	58
33	Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Applied Thermal Engineering, 2014, 73, 1160-1168.	3.0	102
34	Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Applied Energy, 2014, 136, 217-227.	5.1	197
35	Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Solar Energy Materials and Solar Cells, 2014, 126, 42-50.	3.0	140
36	Development, Characterization, and Latent Heat Thermal Energy Storage Properties of Neopentyl Glycol-Fatty Acid Esters as New Solid–Liquid PCMs. Industrial & Engineering Chemistry Research, 2013, 52, 18269-18275.	1.8	11

#	Article	IF	CITATIONS
37	Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic) Tj ETQq1 1 0.784314 rgBT Management, 2012, 64, 364-370.	/Overlock 4.4	10 Tf 50 7 83
38	Electrical characterization of a pre-ceramic polymer modified Ag/poly(hydridocarbyne)/p-Si Schottky barrier diode. Journal of Materials Science: Materials in Electronics, 2012, 23, 2282-2288.	1.1	11
39	Steady-state thermal comfort properties of fabrics incorporated with microencapsulated phase change materials. Journal of the Textile Institute, 2012, 103, 757-765.	1.0	21
40	Polyethylene glycolâ€sugar composites as shape stabilized phase change materials for thermal energy storage. Polymer Composites, 2012, 33, 1728-1736.	2.3	33
41	Synthesis and thermal properties of poly(styrene-co-ally alcohol)-graft-stearic acid copolymers as novel solid–solid PCMs for thermal energy storage. Solar Energy, 2012, 86, 2282-2292.	2.9	38
42	Preparation and thermal energy storage properties of poly(<i>n</i> à€butyl methacrylate)/fatty acids composites as formâ€stable phase change materials. Polymer Composites, 2012, 33, 92-98.	2.3	18
43	Thermal energy storage by poly(styreneâ€coâ€pâ€stearoylstyrene) copolymers produced by the modification of polystyrene. Journal of Applied Polymer Science, 2012, 125, 3447-3455.	1.3	20
44	Poly(2â€alkyloyloxyethylacrylate) and poly(2â€alkyloyloxyethylacrylateâ€ <i>co</i> â€methylacrylate) comblike polymers as novel phaseâ€change materials for thermal energy storage. Journal of Applied Polymer Science, 2012, 126, 631-640.	1.3	15
45	Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage. Materials Chemistry and Physics, 2012, 133, 87-94.	2.0	134
46	Polyurethanes as solid–solid phase change materials for thermal energy storage. Solar Energy, 2012, 86, 1761-1769.	2.9	128
47	Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Solar Energy Materials and Solar Cells, 2011, 95, 3195-3201.	3.0	94
48	Investigation of mechanical and creep properties of polypyrrole by depth-sensing indentation. Polymer Bulletin, 2011, 66, 649-660.	1.7	14
49	Synthesis and thermal energy storage properties of ethylene dilauroyl, dimyristoyl, and dipalmitoyl amides as novel solid–liquid phase change materials. Solar Energy Materials and Solar Cells, 2011, 95, 1203-1207.	3.0	30
50	Synthesis and thermal properties of poly(<i>n</i> â€butyl acrylate)/ <i>n</i> â€hexadecane microcapsules using different crossâ€linkers and their application to textile fabrics. Journal of Applied Polymer Science, 2011, 120, 2821-2829.	1.3	75
51	Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management, 2011, 52, 687-692.	4.4	278
52	Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate Polymers, 2011, 84, 141-144.	5.1	155
53	Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochimica Acta, 2011, 518, 1-8.	1.2	114
54	Poly(ethylene glycol)/poly(methyl methacrylate) blends as novel formâ€stable phaseâ€change materials for thermal energy storage. Journal of Applied Polymer Science, 2010, 116, 929-933.	1.3	23

#	Article	lF	Citations
55	Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Applied Energy, 2010, 87, 1529-1534.	5.1	285
56	Preparation and characterization of poly(methylmethacrylate-coglycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage. Fibers and Polymers, 2010, 11, 1089-1093.	1.1	74
57	Depth sensing indentation analysis of electrochemically synthesized polythiophene. Materials Chemistry and Physics, 2010, 124, 196-202.	2.0	7
58	Hexamethylene dilauroyl, dimyristoyl, and dipalmytoyl amides as phase change materials for thermal energy storage. Solar Energy, 2010, 84, 666-672.	2.9	30
59	Synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid–liquid phase change materials. Solar Energy Materials and Solar Cells, 2010, 94, 1711-1715.	3.0	81
60	Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage. Journal of Polymers and the Environment, 2009, 17, 254-258.	2.4	93
61	Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy, 2009, 83, 1757-1763.	2.9	317
62	Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2009, 93, 143-147.	3.0	372
63	Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chemical Engineering Journal, 2009, 155, 899-904.	6.6	227
64	Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Solar Energy, 2008, 82, 118-124.	2.9	261
65	Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Conversion and Management, 2008, 49, 373-380.	4.4	98
66	Preparation and thermal properties of ethylene glycole distearate as a novel phase change material for energy storage. Materials Letters, 2008, 62, 1122-1125.	1.3	55
67	Synthesis, characterization, and electrical properties of diazophenylene bridged Co, Ni, Cu, Ce, and Er phthalocyanine polymers. Journal of Applied Polymer Science, 2007, 106, 378-385.	1.3	5
68	Synthesis, characterization, and electrical properties of a diazodiphenylene-bridged Cu–phthalocyanine polymer. Journal of Polymer Science Part A, 2006, 44, 5692-5698.	2.5	3
69	Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochimica Acta, 2006, 451, 126-130.	1.2	67
70	Sulfonation degree determination of polystyrene ionomers by using adiabatic bomb calorimeter. Journal of Applied Polymer Science, 2006, 100, 4684-4688.	1.3	0
71	Eudragit S (methyl methacrylate methacrylic acid copolymer)/fatty acid blends as form-stable phase change material for latent heat thermal energy storage. Journal of Applied Polymer Science, 2006, 101, 1402-1406.	1.3	49
72	Poly(ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. AICHE Journal, 2006, 52, 3310-3314.	1.8	108

#	Article	IF	CITATION
73	Synthesis and characterization of 1,4-diazophenylenebridged Cu-phthalocyanine polymer. E-Polymers, 2004, 4, .	1.3	O
74	Compatibilization of Poly(2,6-dimethyl-l,4-phenylene oxide) and Poly(2,6-dichloro-l,4-phenylene oxide) with Sulfonated Polystyrene and its Na and Zn-neutralized Ionomers. Polymer Bulletin, 2003, 50, 191-196.	1.7	5
75	Miscibility of polystyrene-based ionomers with poly(2,6-dibromo-1,4-phenylene oxide). Journal of Applied Polymer Science, 2001, 82, 3558-3567.	1.3	5
76	Sodium Neutralized Sulfated Polymers as Polymeric Salt Hydrates for Thermal Energy Storage. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 461-470.	0.4	1