Reetu Elza Joseph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3117400/publications.pdf

Version: 2024-02-01

		1040056	1372567	
9	277	9	10	
papers	citations	h-index	g-index	
10	10	10	343	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Upâ€Conversion Fluorescent Labels for Plastic Recycling: A Review. Advanced Sustainable Systems, 2017, 1, 1600033.	5. 3	70
2	Highly Efficient La ₂ O ₃ :Yb ³⁺ ,Tm ³⁺ Single-Band NIR-to-NIR Upconverting Microcrystals for Anti-Counterfeiting Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 39851-39859.	8.0	57
3	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	3.3	30
4	Ratiometric Luminescent Thermometry with Excellent Sensitivity over a Broad Temperature Range Utilizing Thermallyâ€Assisted and Multiphoton Upconversion in Triplyâ€Doped La ₂ O ₃ :Yb ³⁺ /Er ³⁺ /Nd ³⁺ . Advanced Optical Materials, 2021, 9, 2001901.	7. 3	27
5	Critical Power Density: A Metric To Compare the Excitation Power Density Dependence of Photon Upconversion in Different Inorganic Host Materials. Journal of Physical Chemistry A, 2019, 123, 6799-6811.	2.5	26
6	A method for correcting the excitation power density dependence of upconversion emission due to laser-induced heating. Optical Materials, 2018, 82, 65-70.	3.6	23
7	Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities. Chemical Science, 2020, 11, 7972-7978.	7.4	16
8	High Quantum Yield Singleâ€Band Green Upconversion in La ₂ O ₃ :Yb ³⁺ , Ho ³⁺ Microcrystals for Anticounterfeiting and Plastic Recycling. Particle and Particle Systems Characterization, 2019, 36, 1800462.	2.3	15
9	Bright constant color upconversion based on dual 980 and 1550Ânm excitation of SrF2:Yb3+, Er3+ and β-NaYF4:Yb3+, Er3+ micropowders― considerations for persistence of vision displays. Optical Materials, 2021 111 110598	3.6	12