
Justin L P Benesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3117149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biobox: a toolbox for biomolecular modelling. Bioinformatics, 2022, 38, 1149-1151.	4.1	2
2	Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS Nanoscience Au, 2022, 2, 404-413.	4.8	6
3	Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nature Communications, 2022, 13, 2692.	12.8	21
4	Complementing machine learningâ€based structure predictions with native mass spectrometry. Protein Science, 2022, 31, .	7.6	13
5	Single-molecule fluorescence-based approach reveals novel mechanistic insights into human small heat shock protein chaperone function. Journal of Biological Chemistry, 2021, 296, 100161.	3.4	12
6	A weakened interface in the P182L variant of HSP27 associated with severe Charcotâ€Marieâ€Tooth neuropathy causes aberrant binding to interacting proteins. EMBO Journal, 2021, 40, e103811.	7.8	14
7	The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
8	Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chemical Communications, 2021, 57, 1450-1453.	4.1	8
9	Aggregation in the spotlight. ELife, 2021, 10, .	6.0	1
10	Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. Jacs Au, 2021, 1, 2385-2393.	7.9	12
11	Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation. Analytical Chemistry, 2020, 92, 1702-1711.	6.5	9
12	Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Analytical Chemistry, 2020, 92, 10881-10890.	6.5	17
13	Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Analytical Chemistry, 2020, 92, 10872-10880.	6.5	24
14	Frontispiz: Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie, 2020, 132, .	2.0	0
15	Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie, 2020, 132, 10866-10871.	2.0	11
16	Monitoring protein-metal binding by 19F NMR – a case study with the New Delhi metallo-β-lactamase 1. RSC Medicinal Chemistry, 2020, 11, 387-391.	3.9	2
17	Origin of complexity in haemoglobin evolution. Nature, 2020, 581, 480-485.	27.8	89
18	Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie - International Edition, 2020, 59, 10774-10779.	13.8	72

#	Article	IF	CITATIONS
19	Frontispiece: Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
20	Conditional Disorder in Small Heat-shock Proteins. Journal of Molecular Biology, 2020, 432, 3033-3049.	4.2	21
21	Small heat-shock proteins and their role in mechanical stress. Cell Stress and Chaperones, 2020, 25, 601-613.	2.9	30
22	Quantifying the heterogeneity of macromolecular machines by mass photometry. Nature Communications, 2020, 11, 1772.	12.8	146
23	Recommendations for reporting ion mobility Mass Spectrometry measurements. Mass Spectrometry Reviews, 2019, 38, 291-320.	5.4	315
24	Analysis of αB-crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst, The, 2019, 144, 4413-4424.	3.5	6
25	HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C. Science Advances, 2019, 5, eaav8421.	10.3	52
26	An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature, 2019, 569, 438-442.	27.8	124
27	Local unfolding of the HSP27 monomer regulates chaperone activity. Nature Communications, 2019, 10, 1068.	12.8	93
28	Structural and functional consequences of age-related isomerization in \hat{I}_{\pm} -crystallins. Journal of Biological Chemistry, 2019, 294, 7546-7555.	3.4	27
29	Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Current Opinion in Structural Biology, 2019, 54, 50-58.	5.7	29
30	Probing the Dissociation of Protein Complexes by Means of Gas-Phase H/D Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 45-57.	2.8	16
31	Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science, 2018, 359, 930-935.	12.6	51
32	Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis. Cell Stress and Chaperones, 2018, 23, 723-732.	2.9	5
33	The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin. Cell Stress and Chaperones, 2018, 23, 827-836.	2.9	7
34	Identifying key membrane protein lipid interactions using mass spectrometry. Nature Protocols, 2018, 13, 1106-1120.	12.0	85
35	Real-Time Intrinsic Fluorescence Visualization and Sizing of Proteins and Protein Complexes in Microfluidic Devices. Analytical Chemistry, 2018, 90, 3849-3855.	6.5	42
36	Mass spectrometry beyond the native state. Current Opinion in Chemical Biology, 2018, 42, 130-137.	6.1	43

#	Article	IF	CITATIONS
37	Quantitative mass imaging of single biological macromolecules. Science, 2018, 360, 423-427.	12.6	453
38	It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. Journal of Biological Chemistry, 2018, 293, 19511-19521.	3.4	41
39	Terminal Regions Confer Plasticity to the Tetrameric Assembly of Human HspB2 and HspB3. Journal of Molecular Biology, 2018, 430, 3297-3310.	4.2	37
40	Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Structure, 2018, 26, 1116-1126.e4.	3.3	9
41	Lipid binding attenuates channel closure of the outer membrane protein OmpF. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6691-6696.	7.1	39
42	The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nature Chemical Biology, 2018, 14, 688-695.	8.0	31
43	Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nature Communications, 2017, 8, 13993.	12.8	68
44	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	3.3	39
45	Proline isomerization in the C-terminal region of HSP27. Cell Stress and Chaperones, 2017, 22, 639-651.	2.9	24
46	Accommodating Protein Dynamics in the Modeling of Chemical Crosslinks. Structure, 2017, 25, 1751-1757.e5.	3.3	36
47	Discovery of a Highly Selective Cellâ€Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angewandte Chemie - International Edition, 2017, 56, 15555-15559.	13.8	32
48	Controlling Protein Orientation in Vacuum Using Electric Fields. Journal of Physical Chemistry Letters, 2017, 8, 4540-4544.	4.6	29
49	Discovery of a Highly Selective Cellâ€Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angewandte Chemie, 2017, 129, 15761-15765.	2.0	0
50	Evaluating the Effect of Phosphorylation on the Structure and Dynamics of Hsp27 Dimers by Means of Ion Mobility Mass Spectrometry. Analytical Chemistry, 2017, 89, 13275-13282.	6.5	16
51	Adenosine Monophosphate Binding Stabilizes the KTN Domain of the <i>Shewanella denitrificans</i> Kef Potassium Efflux System. Biochemistry, 2017, 56, 4219-4234.	2.5	9
52	Optimal Synthetic Clycosylation of a Therapeutic Antibody. Angewandte Chemie - International Edition, 2016, 55, 2361-2367.	13.8	122
53	Characterisation of <i>Shigella</i> â€Spa33 and <i>Thermotoga</i> â€FliM/N reveals a new model for Câ€ring assembly in T3SS. Molecular Microbiology, 2016, 99, 749-766.	2.5	62
54	Negative Ions Enhance Survival of Membrane Protein Complexes. Journal of the American Society for Mass Spectrometry, 2016, 27, 1099-1104.	2.8	21

#	Article	IF	CITATIONS
55	Low Charge and Reduced Mobility of Membrane Protein Complexes Has Implications for Calibration of Collision Cross Section Measurements. Analytical Chemistry, 2016, 88, 5879-5884.	6.5	30
56	Protein Aggregateâ€Ligand Binding Assays Based on Microfluidic Diffusional Separation. ChemBioChem, 2016, 17, 1920-1924.	2.6	11
57	Infrared Laser Activation of Soluble and Membrane Protein Assemblies in the Gas Phase. Analytical Chemistry, 2016, 88, 7060-7067.	6.5	28
58	The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility. Journal of Biological Chemistry, 2016, 291, 14939-14953.	3.4	16
59	EMâ^©IM: software for relating ion mobility mass spectrometry and electron microscopy data. Analyst, The, 2016, 141, 70-75.	3.5	16
60	GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics. Glycoconjugate Journal, 2016, 33, 399-404.	2.7	73
61	Phosphomimics Destabilize Hsp27 Oligomeric Assemblies and Enhance Chaperone Activity. Chemistry and Biology, 2015, 22, 186-195.	6.0	110
62	Combining tandem mass spectrometry with ion mobility separation to determine the architecture of polydisperse proteins. International Journal of Mass Spectrometry, 2015, 377, 663-671.	1.5	16
63	Dynamics-Function Relationships of the Small Heat-Shock Proteins. Heat Shock Proteins, 2015, , 87-100.	0.2	5
64	Collision Cross Sections for Structural Proteomics. Structure, 2015, 23, 791-799.	3.3	231
65	The Role of the Detergent Micelle in Preserving the Structure of Membrane Proteins in the Gas Phase. Angewandte Chemie - International Edition, 2015, 54, 4577-4581.	13.8	117
66	Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary Interactions to Polydisperse Ensembles. Analytical Chemistry, 2015, 87, 4370-4376.	6.5	663
67	Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1. Chemical Science, 2015, 6, 956-963.	7.4	36
68	Native Mass Spectrometry: Towards High-Throughput Structural Proteomics. Methods in Molecular Biology, 2015, 1261, 349-371.	0.9	31
69	The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1562-70.	7.1	181
70	Dynamical structure of αB-crystallin. Progress in Biophysics and Molecular Biology, 2014, 115, 11-20.	2.9	74
71	Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957.	2.2	11
72	Mass-Selective Soft-Landing of Protein Assemblies with Controlled Landing Energies. Analytical Chemistry, 2014, 86, 8321-8328.	6.5	61

#	Article	IF	CITATIONS
73	Detergent-free mass spectrometry of membrane protein complexes. Nature Methods, 2013, 10, 1206-1208.	19.0	152
74	C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110405.	4.0	70
75	Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain. PLoS ONE, 2013, 8, e67961.	2.5	66
76	Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. Journal of the Royal Society Interface, 2012, 9, 801-816.	3.4	125
77	Probing Dynamic Conformations of the High-Molecular-Weight αB-Crystallin Heat Shock Protein Ensemble by NMR Spectroscopy. Journal of the American Chemical Society, 2012, 134, 15343-15350.	13.7	63
78	Small Heat-Shock Proteins: Paramedics of the Cell. Topics in Current Chemistry, 2012, 328, 69-98.	4.0	116
79	Dissecting Heterogeneous Molecular Chaperone Complexes Using a Mass Spectrum Deconvolution Approach. Chemistry and Biology, 2012, 19, 599-607.	6.0	70
80	αB-Crystallin Polydispersity Is a Consequence of Unbiased Quaternary Dynamics. Journal of Molecular Biology, 2011, 413, 297-309.	4.2	122
81	Quaternary Dynamics of αB-Crystallin as a Direct Consequence of Localised Tertiary Fluctuations in the C-Terminus. Journal of Molecular Biology, 2011, 413, 310-320.	4.2	89
82	The Polydispersity of αB-Crystallin Is Rationalized by an Interconverting Polyhedral Architecture. Structure, 2011, 19, 1855-1863.	3.3	116
83	Mass spectrometry: come of age for structural and dynamical biology. Current Opinion in Structural Biology, 2011, 21, 641-649.	5.7	240
84	The Quaternary Organization and Dynamics of the Molecular Chaperone HSP26 Are Thermally Regulated. Chemistry and Biology, 2010, 17, 1008-1017.	6.0	45
85	Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science, 2010, 19, 1031-1043.	7.6	264
86	Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2007-2012.	7.1	231
87	Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy. Journal of Structural Biology, 2010, 172, 161-168.	2.8	64
88	Defining the Structural Basis of Human Plasminogen Binding by Streptococcal Surface Enolase. Journal of Biological Chemistry, 2009, 284, 17129-17137.	3.4	61
89	Coupling Microdroplet Microreactors with Mass Spectrometry: Reading the Contents of Single Droplets Online. Angewandte Chemie - International Edition, 2009, 48, 3665-3668.	13.8	162
90	Dehydrated but unharmed. Nature, 2009, 462, 576-577.	27.8	35

#	Article	IF	CITATIONS
91	A Monte Carlo approach for assessing the specificity of protein oligomers observed in nano-electrospray mass spectra. International Journal of Mass Spectrometry, 2009, 283, 169-177.	1.5	28
92	Collisional activation of protein complexes: Picking up the pieces. Journal of the American Society for Mass Spectrometry, 2009, 20, 341-348.	2.8	177
93	Quadrupole-Time-of-Flight Mass Spectrometer Modified for Higher-Energy Dissociation Reduces Protein Assemblies to Peptide Fragments. Analytical Chemistry, 2009, 81, 1270-1274.	6.5	50
94	The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. Journal of Molecular Biology, 2009, 393, 1022-1032.	4.2	50
95	Real-Time Monitoring of Protein Complexes Reveals their Quaternary Organization and Dynamics. Chemistry and Biology, 2008, 15, 246-253.	6.0	72
96	Ion mobility–mass spectrometry analysis of large protein complexes. Nature Protocols, 2008, 3, 1139-1152.	12.0	973
97	Small Heat Shock Protein Activity Is Regulated by Variable Oligomeric Substructure. Journal of Biological Chemistry, 2008, 283, 28513-28517.	3.4	99
98	Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochemical Journal, 2007, 401, 129-141.	3.7	159
99	Protein Complexes in the Gas Phase:  Technology for Structural Genomics and Proteomics. Chemical Reviews, 2007, 107, 3544-3567.	47.7	376
100	All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable. Molecular Microbiology, 2006, 61, 1583-1597.	2.5	31
101	Tandem Mass Spectrometry Reveals the Quaternary Organization of Macromolecular Assemblies. Chemistry and Biology, 2006, 13, 597-605.	6.0	206
102	Mass spectrometry of macromolecular assemblies: preservation and dissociation. Current Opinion in Structural Biology, 2006, 16, 245-251.	5.7	199
103	Subunit Exchange of Polydisperse Proteins. Journal of Biological Chemistry, 2005, 280, 14485-14491.	3.4	109
104	Dodecameric Structure of the Small Heat Shock Protein Acr1 from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 33419-33425.	3.4	91
105	Phosphorylation of αB-Crystallin Alters Chaperone Function through Loss of Dimeric Substructure. Journal of Biological Chemistry, 2004, 279, 28675-28680.	3.4	144
106	Thermal Dissociation of Multimeric Protein Complexes by Using Nanoelectrospray Mass Spectrometry. Analytical Chemistry, 2003, 75, 2208-2214.	6.5	161
107	Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in ÂB-crystallin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10611-10616.	7.1	235
108	Subunit Exchange of Multimeric Protein Complexes. Journal of Biological Chemistry, 2002, 277, 38921-38929.	3.4	180