
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3117093/publications.pdf Version: 2024-02-01

Ιλε \λ/μλ ΚιΜ

#	Article	IF	CITATIONS
1	PLAG alleviates cisplatin-induced cachexia in lung cancer implanted mice. Translational Oncology, 2022, 20, 101398.	3.7	4
2	PLAC co-treatment increases the anticancer effect of Adriamycin and cyclophosphamide in a triple-negative breast cancer xenograft mouse model. Biochemical and Biophysical Research Communications, 2022, 619, 110-116.	2.1	0
3	Suppression of tumor progression by thioredoxin-interacting protein-dependent adenosine 2B receptor degradation in a PLAG-treated Lewis lung carcinoma-1 model of non–small cell lung cancer. Neoplasia, 2022, 31, 100815.	5.3	3
4	Improving anticancer effect of aPD-L1 through lowering neutrophil infiltration by PLAG in tumor implanted with MB49 mouse urothelial carcinoma. BMC Cancer, 2022, 22, .	2.6	3
5	Mitigation of Hematopoietic Syndrome of Acute Radiation Syndrome by 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) is Associated with Regulation of Systemic Inflammation in a Murine Model of Total-Body Irradiation. Radiation Research, 2021, 196, 55-65.	1.5	1
6	1â€Palmitoylâ€2â€linoleoylâ€3â€acetylâ€racâ€glycerol ameliorates chemoradiationâ€induced oral mucositis. Ora Diseases, 2020, 26, 111-121.	al 3.0	6
7	1‑Palmitoyl‑2‑linoleoyl‑3‑acetyl‑rac‑glycerol ameliorates EGF‑induced MMP‑9 expression by pro receptor desensitization in MDA‑MB‑231 cells. Oncology Reports, 2020, 44, 241-251.	omoting 2.6	7
8	1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol (PLAG) Mitigates Monosodium Urate (MSU)-Induced Acute Gouty Inflammation in BALB/c Mice. Frontiers in Immunology, 2020, 11, 710.	4.8	9
9	PLAG Exerts Anti-Metastatic Effects by Interfering with Neutrophil Elastase/PAR2/EGFR Signaling in A549 Lung Cancer Orthotopic Model. Cancers, 2020, 12, 560.	3.7	5
10	1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol (PLAG) Rapidly Resolves LPS-Induced Acute Lung Injury Through the Effective Control of Neutrophil Recruitment. Frontiers in Immunology, 2019, 10, 2177.	4.8	18
11	Mitigating Effects of 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) on Hematopoietic Acute Radiation Syndrome after Total-Body Ionizing Irradiation in Mice. Radiation Research, 2019, 192, 602.	1.5	5
12	1-Palmitoyl-2-Linoleoyl-3-Acetyl- rac -Glycerol Attenuates Streptozotocin-Induced Pancreatic Beta Cell Damage by Promoting Glucose Transporter 2 Endocytosis. Molecular and Cellular Biology, 2019, 39, .	2.3	5
13	PLAG enhances macrophage mobility for efferocytosis of apoptotic neutrophils via membrane redistribution of P2Y2. FEBS Journal, 2019, 286, 5016-5029.	4.7	9
14	Mitigating Effect of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol (PLAG) on a Murine Model of 5-Fluorouracil-Induced Hematological Toxicity. Cancers, 2019, 11, 1811.	3.7	7
15	Bacterial Clearance Is Enhanced by α2,3- and α2,6-Sialyllactose via Receptor-Mediated Endocytosis and Phagocytosis. Infection and Immunity, 2019, 87, .	2.2	12
16	1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) attenuates gemcitabine-induced neutrophil extravasation. Cell and Bioscience, 2019, 9, 4.	4.8	12
17	1â€palmitoylâ€2â€linoleoylâ€3â€acetylâ€racâ€glycerol (PLAG) reduces hepatic injury in concanavalin Aâ€treated Journal of Cellular Biochemistry, 2018, 119, 1392-1405.	mice. 2.6	18
18	PLAG alleviates chemotherapy-induced thrombocytopenia via promotion of megakaryocyte/erythrocyte progenitor differentiation in mice. Thrombosis Research, 2018, 161, 84-90.	1.7	9

#	Article	IF	CITATIONS
19	HX-1171 attenuates pancreatic β-cell apoptosis and hyperglycemia-mediated oxidative stress via Nrf2 activation in streptozotocin-induced diabetic model. Oncotarget, 2018, 9, 24260-24271.	1.8	14
20	HXâ€1171, a Novel Nrf2 Activator, Induces <i>NQO1</i> and <i>HMOX1</i> Expression. Journal of Cellular Biochemistry, 2017, 118, 3372-3380.	2.6	11
21	1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol ameliorates arthritic joints through reducing neutrophil infiltration mediated by IL-6/STAT3 and MIP-2 activation. Oncotarget, 2017, 8, 96636-96648.	1.8	21
22	The Therapeutic Effect of PLAG against Oral Mucositis in Hamster and Mouse Model. Frontiers in Oncology, 2016, 6, 209.	2.8	25
23	Ingenane-type diterpene compounds fromEuphorbia kansuimodulate IFN-γ production through NF-κB activation. Journal of the Science of Food and Agriculture, 2016, 96, 2635-2640.	3.5	9
24	PRDM1, a Tumor‣uppressor Gene, is Induced by Genkwadaphnin in Human Colon Cancer SW620 Cells. Journal of Cellular Biochemistry, 2016, 117, 172-179.	2.6	19
25	PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol) augments the therapeutic effect of pegfilgrastim on gemcitabine-induced neutropenia. Cancer Letters, 2016, 377, 25-31.	7.2	16
26	Genkwadaphnin promotes leukocyte migration by increasing CD44 expression via PKD1/NF-κB signaling pathway. Immunology Letters, 2016, 173, 69-76.	2.5	5
27	Protective effect of EC-18, a synthetic monoacetyldiglyceride on lung inflammation in a murine model induced by cigarette smoke and lipopolysaccharide. International Immunopharmacology, 2016, 30, 62-68.	3.8	17
28	PLAG (1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol) Modulates Eosinophil Chemotaxis by Regulating CCL26 Expression from Epithelial Cells. PLoS ONE, 2016, 11, e0151758.	2.5	18
29	Effect of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol on Immune Functions in Healthy Adults in a Randomized Controlled Trial. Immune Network, 2015, 15, 150.	3.6	3
30	1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) Modulates Th2 Immunity through Attenuation of IL-4 Expression. Immune Network, 2015, 15, 100.	3.6	16
31	Thymic Stromal Lymphopoietin Induction Is Mediated by the Major Whey Proteins α-Lactalbumin and β-Lactoglobulin through the NF-κB Pathway in Immune Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 10803-10810.	5.2	3
32	The effect of 4α,5α-epoxy-10α,14-dihydro-inuviscolide, a novel immunosuppressant isolated from Carpesium abrotanoides, on the cytokine profile in vitro and in vivo. International Immunopharmacology, 2015, 25, 121-129.	3.8	3
33	Zymosan and PMA activate the immune responses of Mutz3-derived dendritic cells synergistically. Immunology Letters, 2015, 167, 41-46.	2.5	11
34	Control of Neutrophil Endothelial Transmigration By EC-18 in Chemotherapy Induced Neutropenia. Blood, 2015, 126, 2210-2210.	1.4	1
35	1-Pamitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol May Reduce Incidence of Gemcitabine-Induced Neutropenia: A Pilot Case-Controlled Study. World Journal of Oncology, 2015, 6, 410-415.	1.5	3
36	Neutrophil Transmigration into the Joint of RA-Induced Mouse Is Markedly Blocked By EC-18, Via STAT3 Signaling. Blood, 2015, 126, 2207-2207.	1.4	0

#	Article	IF	CITATIONS
37	Genkwadaphnin induces reactive oxygen species (ROS)-mediated apoptosis of squamous cell carcinoma (SCC) cells. Biochemical and Biophysical Research Communications, 2014, 450, 1115-1119.	2.1	13
38	Genkwadaphnin Induces IFN-γ via PKD1/NF-κB/STAT1 Dependent Pathway in NK-92 Cells. PLoS ONE, 2014, 9, e115146.	2.5	17
39	The EF-hand calcium-binding protein tescalcin is a potential oncotarget in colorectal cancer. Oncotarget, 2014, 5, 2149-2160.	1.8	28
40	NDRG2 positively regulates E-cadherin expression and prolongs overall survival in colon cancer patients. Oncology Reports, 2013, 30, 1890-1898.	2.6	28
41	Expression of endothelial cell-specific molecule-1 regulated by hypoxia inducible factor-1α in human colon carcinoma: Impact of ESM-1 on prognosis and its correlation with clinicopathological features. Oncology Reports, 2012, 28, 1701-1708.	2.6	60
42	NDRG2 and PRA1 interact and synergistically inhibit Tâ€cell factor/βâ€catenin signaling. FEBS Letters, 2012, 586, 3962-3968.	2.8	20
43	Ingenane-type diterpenes with a modulatory effect on IFN-γ production from the roots of Euphorbia kansui. Archives of Pharmacal Research, 2012, 35, 1553-1558.	6.3	18
44	Crystal Structure of the Human N-Myc Downstream-regulated Gene 2 Protein Provides Insight into Its Role as a Tumor Suppressor. Journal of Biological Chemistry, 2011, 286, 12450-12460.	3.4	60
45	Identification of endothelial cellâ€specific moleculeâ€1 as a potential serum marker for colorectal cancer. Cancer Science, 2010, 101, 2248-2253.	3.9	37
46	NDRG2 is one of novel intrinsic factors for regulation of IL-10 production in human myeloid cell. Biochemical and Biophysical Research Communications, 2010, 396, 684-690.	2.1	23
47	NDRG2 expression decreases with tumor stages and regulates TCF/Â-catenin signaling in human colon carcinoma. Carcinogenesis, 2009, 30, 598-605.	2.8	66
48	NDRG2 suppresses cell proliferation through downâ€regulation of APâ€1 activity in human colon carcinoma cells. International Journal of Cancer, 2009, 124, 7-15.	5.1	69
49	Upregulation of the cysteine protease inhibitor, cystatin SN, contributes to cell proliferation and cathepsin inhibition in gastric cancer. Clinica Chimica Acta, 2009, 406, 45-51.	1.1	56
50	S100A6 (calcyclin) enhances the sensitivity to apoptosis via the upregulation of caspaseâ€3 activity in Hep3B cells. Journal of Cellular Biochemistry, 2008, 103, 1183-1197.	2.6	42
51	A quantitative analysis of N-myc downstream regulated gene 2 (NDRG 2) in human tissues and cell lysates by reverse-phase protein microarray. Clinica Chimica Acta, 2008, 387, 84-89.	1.1	14
52	Functional and Clinical Evidence for <i>NDRG2</i> as a Candidate Suppressor of Liver Cancer Metastasis. Cancer Research, 2008, 68, 4210-4220.	0.9	121
53	Prenylated Rab acceptor 1 (PRA1) inhibits TCF∫β-catenin signaling by binding to β-catenin. Biochemical and Biophysical Research Communications, 2006, 349, 200-208.	2.1	13
54	Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast, 2004, 13, 383-388.	2.2	165

#	Article	IF	CITATIONS
55	The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Letters, 2004, 203, 217-224.	7.2	227
56	Over-expression of human UREB1 in colorectal cancer: HECT domain of human UREB1 inhibits the activity of tumor suppressor p53 protein. Biochemical and Biophysical Research Communications, 2004, 326, 7-17.	2.1	42
57	Involvement of NF-κB in the regulation of S100A6 gene expression in human hepatoblastoma cell line HepG2. Biochemical and Biophysical Research Communications, 2003, 307, 274-280.	2.1	38
58	Characterization of the Monoclonal Antibody Specific to Human S100A6 Protein. Immune Network, 2002, 2, 175.	3.6	0
59	Effect of High Blood Flow on the Expression of Endothelial Constitutive Nitric Oxide Synthasein Rats with Femoral Arteriovenous Shunts. Endothelium: Journal of Endothelial Cell Research, 2000, 7, 243-252.	1.7	7
60	Cloning of the genomic sequence encoding a processed adenylate kinase 2 pseudogene. IUBMB Life, 1999, 47, 37-46.	3.4	1
61	Isolation and characterization of cDNA clone for human liver 10â€formyltetrahydrofolate dehydrogenase. IUBMB Life, 1999, 47, 407-415.	3.4	4
62	Cloning of the human cDNA sequence encoding the NADH: Ubiquinone oxidoreductase MLRQ subunit. IUBMB Life, 1997, 43, 669-675.	3.4	9
63	Cloning and characterization of cDNA for human adenylate kinase 2A. IUBMB Life, 1996, 39, 833-842.	3.4	2