Jeffrey Craig Horowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3116111/publications.pdf

Version: 2024-02-01

60 papers 6,293 citations

94381 37 h-index 56 g-index

61 all docs

61 docs citations

61 times ranked

8024 citing authors

#	Article	IF	CITATIONS
1	NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nature Medicine, 2009, 15, 1077-1081.	15.2	741
2	Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L344-L357.	1.3	570
3	Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for <i>In Vitro</i> Investigation. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 866-876.	2.5	552
4	Myofibroblast Differentiation by Transforming Growth Factor-ॆ1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase. Journal of Biological Chemistry, 2003, 278, 12384-12389.	1.6	547
5	Evolving Concepts of Apoptosis in Idiopathic Pulmonary Fibrosis. Proceedings of the American Thoracic Society, 2006, 3, 350-356.	3.5	310
6	Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB Journal, 2005, 19, 1-16.	0.2	234
7	Combinatorial activation of FAK and AKT by transforming growth factor- \hat{l}^21 confers an anoikis-resistant phenotype to myofibroblasts. Cellular Signalling, 2007, 19, 761-771.	1.7	220
8	Activation of the Pro-survival Phosphatidylinositol 3-Kinase/AKT Pathway by Transforming Growth Factor-Î ² 1 in Mesenchymal Cells Is Mediated by p38 MAPK-dependent Induction of an Autocrine Growth Factor. Journal of Biological Chemistry, 2004, 279, 1359-1367.	1.6	214
9	Extracellular matrix in lung development, homeostasis and disease. Matrix Biology, 2018, 73, 77-104.	1.5	200
10	Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 214-222.	2.5	199
11	Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis. American Journal of Pathology, 2015, 185, 969-986.	1.9	138
12	Endothelin-1 and Transforming Growth Factor- \hat{l}^2 1 Independently Induce Fibroblast Resistance to Apoptosis via AKT Activation. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 484-493.	1.4	133
13	Prostaglandin E ₂ induces fibroblast apoptosis by modulating multiple survival pathways. FASEB Journal, 2009, 23, 4317-4326.	0.2	132
14	Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts. Inflammatory Bowel Diseases, 2013, 19, 891-903.	0.9	132
15	Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death and Disease, 2013, 4, e621-e621.	2.7	122
16	Modulation of Prosurvival Signaling in Fibroblasts by a Protein Kinase Inhibitor Protects against Fibrotic Tissue Injury. American Journal of Pathology, 2005, 166, 367-375.	1.9	115
17	Epithelial-Mesenchymal Interactions in Pulmonary Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 600-612.	0.8	109
18	Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: Impact of a "Top-Down―approach to intestinal fibrosis in mice. Inflammatory Bowel Diseases, 2012, 18, 460-471.	0.9	101

#	Article	IF	CITATIONS
19	Implicating Exudate Macrophages and Ly-6Chigh Monocytes in CCR2-Dependent Lung Fibrosis following Gene-Targeted Alveolar Injury. Journal of Immunology, 2013, 190, 3447-3457.	0.4	98
20	Plasminogen Activation–Induced Pericellular Fibronectin Proteolysis Promotes Fibroblast Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 78-87.	1.4	93
21	Matrix Biology of Idiopathic Pulmonary Fibrosis. American Journal of Pathology, 2014, 184, 1643-1651.	1.9	91
22	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	1.4	82
23	Mechanisms for the Resolution of Organ Fibrosis. Physiology, 2019, 34, 43-55.	1.6	78
24	Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. International Journal of Biochemistry and Cell Biology, 2012, 44, 158-169.	1.2	73
25	Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L786-L796.	1.3	73
26	PAIâ€1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. Journal of Pathology, 2012, 228, 170-180.	2.1	64
27	Increased survivin expression contributes to apoptosis-resistance in IPF fibroblasts. Advances in Bioscience and Biotechnology (Print), 2012, 03, 657-664.	0.3	61
28	X-Linked Inhibitor of Apoptosis Regulates Lung Fibroblast Resistance to Fas-Mediated Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 86-95.	1.4	60
29	Effects of the Protein Kinase Inhibitor, Imatinib Mesylate, on Epithelial/Mesenchymal Phenotypes: Implications for Treatment of Fibrotic Diseases. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 35-44.	1.3	56
30	Glutaminolysis Epigenetically Regulates Antiapoptotic Gene Expression in Idiopathic Pulmonary Fibrosis Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 49-57.	1.4	53
31	Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L415-L425.	1.3	50
32	The vitronectin-binding function of PAI-1 exacerbates lung fibrosis in mice. Blood, 2011, 118, 2313-2321.	0.6	49
33	Pulmonary Fibrosis Induced by Â-Herpesvirus in Aged Mice Is Associated With Increased Fibroblast Responsiveness to Transforming Growth Factor-Â. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 714-725.	1.7	47
34	Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis. Scientific Reports, 2016, 6, 37445.	1.6	46
35	Idiopathic Pulmonary Fibrosis. Treatments in Respiratory Medicine, 2006, 5, 325-342.	1.4	45
36	SMAD-Independent Down-Regulation of Caveolin-1 by TGF- \hat{l}^2 : Effects on Proliferation and Survival of Myofibroblasts. PLoS ONE, 2015, 10, e0116995.	1.1	41

#	Article	IF	Citations
37	Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 482-492.	1.4	39
38	Discoidin Domain Receptor 2 Signaling Regulates Fibroblast Apoptosis through PDK1/Akt. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 295-305.	1.4	35
39	Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury. Physiological Reports, 2018, 6, e13753.	0.7	35
40	The vitronectin RGD motif regulates TGF- \hat{l}^2 -induced alveolar epithelial cell apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1206-L1217.	1.3	28
41	"Scar-cinoma― viewing the fibrotic lung mesenchymal cell in the context of cancer biology. European Respiratory Journal, 2016, 47, 1842-1854.	3.1	25
42	Fibroblast growth factors and pulmonary fibrosis: it's more complex than it sounds. Journal of Pathology, 2017, 241, 6-9.	2.1	24
43	Biomechanical Force and Cellular Stiffness in Lung Fibrosis. American Journal of Pathology, 2022, 192, 750-761.	1.9	23
44	Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF- \hat{l}^2 . American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L926-L935.	1.3	22
45	Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli. Respiratory Research, 2018, 19, 91.	1.4	22
46	TLR Signaling Prevents Hyperoxia-Induced Lung Injury by Protecting the Alveolar Epithelium from Oxidant-Mediated Death. Journal of Immunology, 2012, 189, 356-364.	0.4	21
47	Urokinase Plasminogen Activator Overexpression Reverses Established Lung Fibrosis. Thrombosis and Haemostasis, 2019, 119, 1968-1980.	1.8	19
48	Mesenchymal Cell Fate and Phenotypes in the Pathogenesis of Emphysema. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2009, 6, 201-210.	0.7	15
49	Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation. Ultrasound in Medicine and Biology, 2016, 42, 2525-2531.	0.7	12
50	Endobronchial Ultrasound-guided Biopsy of an Intrapulmonary Arterial Mass. Journal of Bronchology and Interventional Pulmonology, 2013, 20, 93-95.	0.8	8
51	Prostaglandin E ₂ 's New Trick. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 2-3.	2.5	7
52	Smoking history, and not depression, is related to deficits in detection of happy and sad faces. Addictive Behaviors, 2015, 41, 210-217.	1.7	7
53	Phlegmasia cerulea dolens: a rare cause of shock. Respirology Case Reports, 2019, 7, e00424.	0.3	7
54	Idiopathic pulmonary fibrosis: What primary care physicians need to know. Cleveland Clinic Journal of Medicine, 2018, 85, 377-386.	0.6	4

#	Article	lF	CITATIONS
55	Outstaying their Welcome: The Persistent Myofibroblast in IPF. , 2014, 1, 3.		4
56	Plakoglobin expression in fibroblasts and its role in idiopathic pulmonary fibrosis. BMC Pulmonary Medicine, 2015, 15, 140.	0.8	3
57	Stress in the ER (Endoplasmic Reticulum). American Journal of Respiratory and Critical Care Medicine, 2008, 178, 782-783.	2.5	2
58	Ultrasound strain measurements for evaluating local pulmonary ventilation. , 2015, 2015, .		2
59	Releasing Tensin. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 417-418.	1.4	O
60	Investigating Matrix–Fibroblast Regulation of MicroRNAs. A Dice(r)y Proposition. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 418-419.	2.5	0