Filipa Monteiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3116072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subtilisin-like proteases in plantââ,¬â€œpathogen recognition and immune priming: a perspective. Frontiers in Plant Science, 2014, 5, 739.	3.6	135
2	Reference Gene Selection and Validation for the Early Responses to Downy Mildew Infection in Susceptible and Resistant Vitis vinifera Cultivars. PLoS ONE, 2013, 8, e72998.	2.5	78
3	Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Functional and Integrative Genomics, 2012, 12, 379-386.	3.5	54
4	Genetic and Genomic Tools to Asssist Sugar Beet Improvement: The Value of the Crop Wild Relatives. Frontiers in Plant Science, 2018, 9, 74.	3.6	46
5	Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling. PLoS ONE, 2014, 9, e98376.	2.5	45
6	Cashew as a High Agricultural Commodity in West Africa: Insights towards Sustainable Production in Guinea-Bissau. Sustainability, 2017, 9, 1666.	3.2	44
7	Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola. Journal of Proteomics, 2017, 152, 48-57.	2.4	41
8	Metabolite extraction for high-throughput FTICR-MS-based metabolomics of grapevine leaves. EuPA Open Proteomics, 2016, 12, 4-9.	2.5	35
9	First clues on a jasmonic acid role in grapevine resistance against the biotrophic fungus Plasmopara viticola. European Journal of Plant Pathology, 2015, 142, 645-652.	1.7	33
10	Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Scientific Reports, 2020, 10, 15688.	3.3	31
11	The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiology and Biochemistry, 2019, 144, 157-165.	5.8	29
12	Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Research Notes, 2013, 6, 388.	1.4	27
13	Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands. AoB PLANTS, 2015, 7, plv051.	2.3	25
14	Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza, 2017, 27, 109-128.	2.8	25
15	Current Status and Trends in Cabo Verde Agriculture. Agronomy, 2020, 10, 74.	3.0	23
16	Exploring glucosinolates diversity in Brassicaceae: a genomic and chemical assessment for deciphering abiotic stress tolerance. Plant Physiology and Biochemistry, 2020, 150, 151-161.	5.8	22
17	Tracking cashew economically important diseases in the West African region using metagenomics. Frontiers in Plant Science, 2015, 6, 482.	3.6	21
18	Preliminary diversity assessment of an undervalued tropical bean (Lablab purpureus (L.) Sweet) through fatty acid profiling. Plant Physiology and Biochemistry, 2018, 132, 508-514.	5.8	21

FILIPA MONTEIRO

#	Article	IF	CITATIONS
19	Agro-Economic Transitions in Guinea-Bissau (West Africa): Historical Trends and Current Insights. Sustainability, 2018, 10, 3408.	3.2	20
20	Metabolomics and transcriptomics to decipher molecular mechanisms underlying ectomycorrhizal root colonization of an oak tree. Scientific Reports, 2021, 11, 8576.	3.3	16
21	Biodiversity Assessment of Sugar Beet Species and Its Wild Relatives: Linking Ecological Data with New Genetic Approaches. American Journal of Plant Sciences, 2013, 04, 21-34.	0.8	16
22	Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources. Frontiers in Plant Science, 2016, 7, 1334.	3.6	15
23	Edible Leafy Vegetables from West Africa (Guinea-Bissau): Consumption, Trade and Food Potential. Foods, 2019, 8, 493.	4.3	15
24	Mechanisms Implemented for the Sustainable Development of Agriculture: An Overview of Cabo Verde Performance. Sustainability, 2020, 12, 5855.	3.2	14
25	A possible approach for gel-based proteomic studies in recalcitrant woody plants. SpringerPlus, 2013, 2, 210.	1.2	13
26	Tackling Food Insecurity in Cabo Verde Islands: The Nutritional, Agricultural and Environmental Values of the Legume Species. Foods, 2021, 10, 206.	4.3	13
27	Labellum transcriptome reveals alkene biosynthetic genes involved in orchid sexual deception and pollination-induced senescence. Functional and Integrative Genomics, 2012, 12, 693-703.	3.5	11
28	Natural Polymorphisms of HIV Type 2polSequences from Drug-Naive Individuals. AIDS Research and Human Retroviruses, 2006, 22, 1178-1182.	1.1	10
29	Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. International Journal of Molecular Sciences, 2019, 20, 2782.	4.1	10
30	New national and regional bryophyte records, 63. Journal of Bryology, 2020, 42, 281-296.	1.2	10
31	Crops Diversification and the Role of Orphan Legumes to Improve the Sub-Saharan Africa Farming Systems. , 0, , .		10
32	Marked hybridization and introgression in <i>Ophrys</i> sect. <i>Pseudophrys</i> in the western Iberian Peninsula. American Journal of Botany, 2016, 103, 677-691.	1.7	9
33	Cephalopod fauna of the Pacific Southern Ocean using Antarctic toothfish (Dissostichus mawsoni) as biological samplers and fisheries bycatch specimens. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 174, 103571.	1.4	9
34	First Report of Dieback Caused by <i>Neofusicoccum batangarum</i> in Cashew in Guinea-Bissau. Plant Disease, 2021, 105, 1215.	1.4	6
35	Isolation and characterization of novel polymorphic nuclear microsatellite markers from Ophrys fusca (Orchidaceae) and cross-species amplification. Conservation Genetics, 2009, 10, 739-742.	1.5	4
36	First Report of Three <i>Lasiodiplodia</i> Species (<i>L. theobromae</i> , <i>L. pseudotheobromae</i> ,) Tj ETQq0	0 0 rgBT 1.4	/Overlock 10 4

2020, 104, 2522-2522.

#	Article	IF	CITATIONS
37	CYCLOPHILIN: A DOWNY MILDEW RESISTANCE GENE CANDIDATE IN GRAPEVINE. Acta Horticulturae, 2014, , 371-377.	0.2	1