Taemyung Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/311590/publications.pdf

Version: 2024-02-01

28 papers

238 citations

933447 10 h-index 996975 15 g-index

28 all docs $\begin{array}{c} 28 \\ \text{docs citations} \end{array}$

times ranked

28

338 citing authors

#	Article	IF	CITATIONS
1	On/off-state noise characteristics in AlGaN/GaN HFET with AlN buffer layer. Applied Physics Letters, 2022, 120, .	3.3	4
2	Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition. Materials, 2022, 15, 1050.	2.9	2
3	Void containing AlN layer grown on AlN nanorods fabricated by polarity selective epitaxy and etching method. AIP Advances, 2021, 11, 045036.	1.3	2
4	Overgrowth of Single Crystal Diamond Using Defect-Selective Etching and Epitaxy Technique in Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2021, 21, 4412-4417.	0.9	3
5	Comparison of MoS 2 /pâ€GaN Heterostructures Fabricated via Direct Chemical Vapor Deposition and Transfer Method. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900722.	1.8	2
6	Direct Current and Radio Frequency Characterizations of AlGaN/AlN/GaN/AlN Doubleâ∈Heterostructure Highâ∈Electron Mobility Transistor (DHâ∈HEMT) on Sapphire. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900695.	1.8	6
7	The Effect of AlN Buffer Layer on AlGaN/GaN/AlN Doubleâ€Heterostructure Highâ€Electronâ€Mobility Transistor. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900694.	1.8	11
8	Large-area far ultraviolet-C emission of Al0.73Ga0.27N/AlN multiple quantum wells using carbon nanotube based cold cathode electron-beam pumping. Thin Solid Films, 2020, 711, 138292.	1.8	5
9	Boronâ€Doped Singleâ€Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900973.	1.8	3
10	Epitaxial growth of deep ultraviolet light emitting diodes with two-step n-AlGaN layer. Thin Solid Films, 2020, 708, 138103.	1.8	4
11	Large area deep ultraviolet light of Al0.47Ga0.53N/Al0.56Ga0.44N multi quantum well with carbon nanotube electron beam pumping. AIP Advances, 2019, 9, .	1.3	11
12	Growth behavior of wafer-scale two-dimensional MoS2 layer growth using metal-organic chemical vapor deposition. Journal of Crystal Growth, 2019, 510, 50-55.	1.5	16
13	Effect on optical, structural and electrical properties by the AlGaN/AlGaN multi quantum wells with different well and barrier thicknesses. Thin Solid Films, 2019, 680, 31-36.	1.8	3
14	Effect of ammonia pretreatment on crystal quality of N-polar GaN grown on SiC by metalorganic chemical vapor deposition. Thin Solid Films, 2019, 675, 148-152.	1.8	0
15	Deep-Ultraviolet AlGaN/AlN Core-Shell Multiple Quantum Wells on AlN Nanorods via Lithography-Free Method. Scientific Reports, 2018, 8, 935.	3.3	21
16	Efficiency Improvement of Deepâ€Ultraviolet Light Emitting Diodes with Gradient Electron Blocking Layers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700677.	1.8	30
17	Improved carrier injection of AlGaN-based deep ultraviolet light emitting diodes with graded superlattice electron blocking layers. RSC Advances, 2018, 8, 35528-35533.	3.6	34
18	Growth mechanism of InGaN nanodots on threeâ€dimensional GaN structures. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700042.	2.4	2

#	Article	IF	CITATIONS
19	Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering. Scientific Reports, 2017, 7, 44148.	3.3	8
20	Polarity of Aluminum Nitride Layers Grown by High-Temperature Metal Organic Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 11807-11810.	0.9	2
21	Novel in situ self-separation of a 2 in. free-standing m-plane GaN wafer from an m-plane sapphire substrate by HCl chemical reaction etching in hydride vapor-phase epitaxy. CrystEngComm, 2016, 18, 7690-7695.	2.6	4
22	Effect of HCl Chemical Reaction Etching on Thick Semipolar (11–22) GaN Growth by Hydride Vapor Phase Epitaxy. Journal of Nanoscience and Nanotechnology, 2016, 16, 11619-11623.	0.9	0
23	Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition. Scientific Reports, 2015, 5, 17372.	3.3	14
24	Self-compensation effect in Si-doped Al _{0.55} Ga _{0.45} N layers for deep ultraviolet applications. Japanese Journal of Applied Physics, 2015, 54, 051002.	1.5	10
25	AlN Nanostructures Fabricated on a Vicinal Sapphire (0001) Substrate. Crystal Growth and Design, 2015, 15, 1242-1248.	3.0	15
26	Self-assembled growth of inclined GaN nanorods on (10â^10) m-plane sapphire using metal–organic chemical vapor deposition. Journal of Crystal Growth, 2015, 409, 65-70.	1.5	12
27	Correlation between luminescence and defects in nonpolar and semipolar InGaN/GaN quantum wells on planar and patterned sapphire substrates. Electronic Materials Letters, 2014, 10, 67-72.	2.2	3
28	Effect of defects on the luminescence in semipolar InGaN/GaN quantum wells on planar and patterned mâ€plane sapphire substrate. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1526-1529.	1.8	11