
## Taemyung Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/311590/publications.pdf Version: 2024-02-01



TAEMVLING KWAK

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Improved carrier injection of AlGaN-based deep ultraviolet light emitting diodes with graded superlattice electron blocking layers. RSC Advances, 2018, 8, 35528-35533.                                                                              | 3.6 | 34        |
| 2  | Efficiency Improvement of Deepâ€Ultraviolet Light Emitting Diodes with Gradient Electron Blocking<br>Layers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700677.                                                       | 1.8 | 30        |
| 3  | Deep-Ultraviolet AlGaN/AlN Core-Shell Multiple Quantum Wells on AlN Nanorods via Lithography-Free<br>Method. Scientific Reports, 2018, 8, 935.                                                                                                       | 3.3 | 21        |
| 4  | Growth behavior of wafer-scale two-dimensional MoS2 layer growth using metal-organic chemical vapor deposition. Journal of Crystal Growth, 2019, 510, 50-55.                                                                                         | 1.5 | 16        |
| 5  | AlN Nanostructures Fabricated on a Vicinal Sapphire (0001) Substrate. Crystal Growth and Design, 2015, 15, 1242-1248.                                                                                                                                | 3.0 | 15        |
| 6  | Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition. Scientific Reports, 2015, 5, 17372.                                                                                            | 3.3 | 14        |
| 7  | Self-assembled growth of inclined GaN nanorods on (10â^'10) m-plane sapphire using metal–organic chemical vapor deposition. Journal of Crystal Growth, 2015, 409, 65-70.                                                                             | 1.5 | 12        |
| 8  | Effect of defects on the luminescence in semipolar InGaN/GaN quantum wells on planar and patterned<br>mâ€plane sapphire substrate. Physica Status Solidi (A) Applications and Materials Science, 2012, 209,<br>1526-1529.                            | 1.8 | 11        |
| 9  | Large area deep ultraviolet light of Al0.47Ga0.53N/Al0.56Ga0.44N multi quantum well with carbon<br>nanotube electron beam pumping. AlP Advances, 2019, 9, .                                                                                          | 1.3 | 11        |
| 10 | The Effect of AlN Buffer Layer on AlGaN/GaN/AlN Doubleâ€Heterostructure Highâ€Electronâ€Mobility<br>Transistor. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900694.                                                    | 1.8 | 11        |
| 11 | Self-compensation effect in Si-doped Al <sub>0.55</sub> Ga <sub>0.45</sub> N layers for deep<br>ultraviolet applications. Japanese Journal of Applied Physics, 2015, 54, 051002.                                                                     | 1.5 | 10        |
| 12 | Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering. Scientific<br>Reports, 2017, 7, 44148.                                                                                                                      | 3.3 | 8         |
| 13 | Direct Current and Radio Frequency Characterizations of AlGaN/AlN/GaN/AlN Doubleâ€Heterostructure<br>Highâ€Electron Mobility Transistor (DHâ€HEMT) on Sapphire. Physica Status Solidi (A) Applications and<br>Materials Science, 2020, 217, 1900695. | 1.8 | 6         |
| 14 | Large-area far ultraviolet-C emission of Al0.73Ga0.27N/AlN multiple quantum wells using carbon nanotube based cold cathode electron-beam pumping. Thin Solid Films, 2020, 711, 138292.                                                               | 1.8 | 5         |
| 15 | Novel in situ self-separation of a 2 in. free-standing m-plane GaN wafer from an m-plane sapphire<br>substrate by HCl chemical reaction etching in hydride vapor-phase epitaxy. CrystEngComm, 2016, 18,<br>7690-7695.                                | 2.6 | 4         |
| 16 | Epitaxial growth of deep ultraviolet light emitting diodes with two-step n-AlGaN layer. Thin Solid<br>Films, 2020, 708, 138103.                                                                                                                      | 1.8 | 4         |
| 17 | On/off-state noise characteristics in AlGaN/GaN HFET with AlN buffer layer. Applied Physics Letters, 2022, 120, .                                                                                                                                    | 3.3 | 4         |
| 18 | Correlation between luminescence and defects in nonpolar and semipolar InGaN/GaN quantum wells<br>on planar and patterned sapphire substrates. Electronic Materials Letters, 2014, 10, 67-72.                                                        | 2.2 | 3         |

TAEMYUNG KWAK

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect on optical, structural and electrical properties by the AlGaN/AlGaN multi quantum wells with different well and barrier thicknesses. Thin Solid Films, 2019, 680, 31-36.                                            | 1.8 | 3         |
| 20 | Boronâ€Doped Singleâ€Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave<br>Plasma Chemical Vapor Deposition. Physica Status Solidi (A) Applications and Materials Science, 2020,<br>217, 1900973. | 1.8 | 3         |
| 21 | Overgrowth of Single Crystal Diamond Using Defect-Selective Etching and Epitaxy Technique in<br>Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2021, 21, 4412-4417.                                 | 0.9 | 3         |
| 22 | Polarity of Aluminum Nitride Layers Grown by High-Temperature Metal Organic Chemical Vapor<br>Deposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 11807-11810.                                                | 0.9 | 2         |
| 23 | Growth mechanism of InGaN nanodots on threeâ€dimensional GaN structures. Physica Status Solidi -<br>Rapid Research Letters, 2017, 11, 1700042.                                                                             | 2.4 | 2         |
| 24 | Comparison of MoS 2 /pâ€GaN Heterostructures Fabricated via Direct Chemical Vapor Deposition and<br>Transfer Method. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900722.                     | 1.8 | 2         |
| 25 | Void containing AlN layer grown on AlN nanorods fabricated by polarity selective epitaxy and etching method. AIP Advances, 2021, 11, 045036.                                                                               | 1.3 | 2         |
| 26 | Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown<br>Using Mist Chemical Vapor Deposition. Materials, 2022, 15, 1050.                                                          | 2.9 | 2         |
| 27 | Effect of ammonia pretreatment on crystal quality of N-polar GaN grown on SiC by metalorganic chemical vapor deposition. Thin Solid Films, 2019, 675, 148-152.                                                             | 1.8 | 0         |
| 28 | Effect of HCl Chemical Reaction Etching on Thick Semipolar (11–22) GaN Growth by Hydride Vapor<br>Phase Epitaxy. Journal of Nanoscience and Nanotechnology, 2016, 16, 11619-11623.                                         | 0.9 | 0         |