
Neville E Sanjana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3115504/publications.pdf Version: 2024-02-01

NEVILLE E SANIANA

#	Article	IF	CITATIONS
1	Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 2014, 343, 84-87.	6.0	4,210
2	Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods, 2014, 11, 783-784.	9.0	4,032
3	High-throughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics, 2015, 16, 299-311.	7.7	998
4	Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites. Cell Reports, 2014, 8, 284-296.	2.9	972
5	Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 2017, 12, 828-863.	5.5	858
6	Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell, 2015, 160, 1246-1260.	13.5	746
7	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527, 192-197.	13.7	726
8	Identification of essential genes for cancer immunotherapy. Nature, 2017, 548, 537-542.	13.7	668
9	A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 2012, 7, 171-192.	5.5	568
10	Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell, 2021, 184, 92-105.e16.	13.5	480
11	A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 2015, 162, 675-686.	13.5	383
12	Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nature Methods, 2019, 16, 409-412.	9.0	364
13	Hypoxia as a therapy for mitochondrial disease. Science, 2016, 352, 54-61.	6.0	339
14	Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 2017, 548, 343-346.	13.7	336
15	Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron, 2016, 89, 147-162.	3.8	279
16	High-resolution interrogation of functional elements in the noncoding genome. Science, 2016, 353, 1545-1549.	6.0	251
17	Transcription control by the ENL YEATS domain in acute leukaemia. Nature, 2017, 543, 270-274.	13.7	248
18	Massively parallel Cas13 screens reveal principles for guide RNA design. Nature Biotechnology, 2020, 38, 722-727.	9.4	233

NEVILLE E SANJANA

#	Article	IF	CITATIONS
19	A fast flexible ink-jet printing method for patterning dissociated neurons in culture. Journal of Neuroscience Methods, 2004, 136, 151-163.	1.3	205
20	The Genome Project-Write. Science, 2016, 353, 126-127.	6.0	194
21	Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 2014, 10, 760.	3.2	187
22	The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. ELife, 2021, 10, .	2.8	173
23	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
24	Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Systems, 2017, 4, 157-170.e14.	2.9	102
25	GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell, 2018, 23, 239-251.e6.	5.2	91
26	A genome-scale screen for synthetic drivers of T cell proliferation. Nature, 2022, 603, 728-735.	13.7	84
27	Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nature Biomedical Engineering, 2018, 2, 540-554.	11.6	78
28	GUIDES: sgRNA design for loss-of-function screens. Nature Methods, 2017, 14, 831-832.	9.0	71
29	Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nature Protocols, 2018, 13, 946-986.	5.5	70
30	Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes. Cell Systems, 2019, 8, 446-455.e8.	2.9	65
31	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
32	Genome-scale CRISPR pooled screens. Analytical Biochemistry, 2017, 532, 95-99.	1.1	52
33	High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation. Cell Reports, 2020, 30, 2859-2868.e5.	2.9	46
34	Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Science Translational Medicine, 2020, 12, .	5.8	44
35	Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nature Biotechnology, 2021, 39, 1270-1277.	9.4	43
36	Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus. Genome Biology, 2021, 22, 242.	3.8	40

NEVILLE E SANJANA

#	Article	IF	CITATIONS
37	CRISPR Screens to Discover Functional Noncoding Elements. Trends in Genetics, 2016, 32, 526-529.	2.9	38
38	Activity-Dependent A-to-I RNA Editing in Rat Cortical Neurons. Genetics, 2012, 192, 281-287.	1.2	36
39	Overexpression of <i>NEUROG2</i> and <i>NEUROG1</i> in human embryonic stem cells produces a network of excitatory and inhibitory neurons. FASEB Journal, 2019, 33, 5287-5299.	0.2	30
40	Transcriptome-wide Cas13 guide RNA design for model organisms and viral RNA pathogens. Cell Genomics, 2021, 1, 100001.	3.0	30
41	Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Cell Chemical Biology, 2022, 29, 321-327.e4.	2.5	25
42	Two Angelman families with unusually advanced neurodevelopment carry a start codon variant in the most highly expressed <i>UBE3A</i> isoform. American Journal of Medical Genetics, Part A, 2018, 176, 1641-1647.	0.7	17
43	Genome-Scale Crispr-Cas9 Knockout Studies Reveal Mutifactorial and Functionally Overlapping Mechanisms of Myeloma Cell Resistance to Proteasome Inhibition. Blood, 2014, 124, 273-273.	0.6	16
44	Recurrent somatic mutations as predictors of immunotherapy response. Nature Communications, 2022, 13, .	5.8	12
45	Automated design of CRISPR prime editors for 56,000 human pathogenic variants. IScience, 2021, 24, 103380.	1.9	11
46	The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Reports, 2022, 38, 110524.	2.9	7
47	Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 123-145.	0.8	6
48	Generation of a knock-in MAP2-tdTomato reporter human embryonic stem cell line with inducible expression of NEUROG2/1 (NYGCe001-A). Stem Cell Research, 2019, 41, 101643.	0.3	6
49	Immunomagnetic cell sorting. Nature Biomedical Engineering, 2019, 3, 759-760.	11.6	5
50	Crispr-Cas9 Saturating Mutagenesis Reveals an Achilles Heel in the BCL11A Erythroid Enhancer for Fetal Hemoglobin Induction (by Genome Editing). Blood, 2015, 126, 638-638.	0.6	5
51	Tracking cell lineages to improve research reproducibility. Nature Biotechnology, 2021, 39, 666-670.	9.4	3
52	A genome-wide net to catch and understand cancer. Science Translational Medicine, 2018, 10, .	5.8	2
53	Voices of the new generation: open science is good for science (and for you). Nature Reviews Molecular Cell Biology, 2021, 22, 709-709.	16.1	2
54	The Wanderlust of Newborn Neocortical Interneurons. Journal of Neuroscience, 2009, 29, 7114-7115.	1.7	0

#	Article	IF	CITATIONS
55	Multiscale Genome Engineering: Genome-Wide Screens and Targeted Approaches. Research and Perspectives in Neurosciences, 2017, , 83-86.	0.4	Ο
56	Development of Novel CAR Therapies for Diffuse Large B-Cell Lymphoma Using Genome-Wide Overexpression Screens. Blood, 2021, 138, 1726-1726.	0.6	0
57	Voices on technology: The molecular biologists' ever-expanding toy box. Molecular Cell, 2022, 82, 221-226.	4.5	0