
Francisco Javier Cañavate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3114862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Science and Technology, 2003, 63, 161-169.	7.8	283
2	Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Composites Part A: Applied Science and Manufacturing, 2007, 38, 44-50.	7.6	115
3	FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment. Polymer Testing, 2016, 52, 200-208.	4.8	91
4	Microwave treatment in waste rubber recycling – recent advances and limitations. EXPRESS Polymer Letters, 2019, 13, 565-588.	2.1	79
5	Structural and mechanical studies on modified reused tyres composites. European Polymer Journal, 2006, 42, 2369-2378.	5.4	76
6	Structural and physico-mechanical properties of natural rubber/GTR composites devulcanized by microwaves: Influence of GTR source and irradiation time. Journal of Composite Materials, 2018, 52, 3099-3108.	2.4	50
7	Effect of the particle size and acid pretreatments on compatibility and properties of recycled HDPE plastic bottles filled with ground tyre powder. Journal of Applied Polymer Science, 2009, 112, 1882-1890.	2.6	46
8	STUDY OF THE CURING PROCESS OF AN EPOXY RESIN BY FTIR SPECTROSCOPY. Polymer-Plastics Technology and Engineering, 2000, 39, 937-943.	1.9	37
9	Changes in Crystallinity of the HDPE Matrix in Composites with Cellulosic Fiber Using DSC and FTIR. Journal of Reinforced Plastics and Composites, 2000, 19, 818-830.	3.1	32
10	Zinc-induced Decrease of the Thermal Stability and Regeneration of Rhodopsin. Journal of Biological Chemistry, 2003, 278, 4719-4724.	3.4	31
11	Properties of Regenerated Cellulose Lyocell Fiber-Reinforced Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 359-371.	3.1	30
12	Acoustic and mechanical properties of recycled polyvinyl chloride/ground tyre rubber composites. Journal of Composite Materials, 2014, 48, 1061-1069.	2.4	28
13	Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber. Polymers, 2020, 12, 545.	4.5	27
14	Synergistic Effects of Bitumen Plasticization and Microwave Treatment on Short-Term Devulcanization of Ground Tire Rubber. Polymers, 2018, 10, 1265.	4.5	26
15	Natural and artificial aging of polypropylene–polyethylene copolymers. Journal of Applied Polymer Science, 2003, 87, 1685-1692.	2.6	25
16	Determination of small interactions in polymer composites by means of FTIR and DSC. Polymer Bulletin, 2000, 44, 293-300.	3.3	24
17	The Use of Waxes and Wetting Additives to Improve Compatibility Between HDPE and Ground Tyre Rubber. Journal of Composite Materials, 2010, 44, 1233-1245.	2.4	24
18	Study of the influence of IPPD on thermoâ€oxidation process of elastomeric hose. Journal of Applied Polymer Science, 2009, 114, 2011-2018.	2.6	23

#	Article	IF	CITATIONS
19	Preliminary Investigation on Auto-Thermal Extrusion of Ground Tire Rubber. Materials, 2019, 12, 2090.	2.9	23
20	Assessment of the devulcanization process of EPDM waste from roofing systems by combined thermomechanical/microwave procedures. Polymer Degradation and Stability, 2021, 183, 109450.	5.8	21
21	Biocomposites using waste whole chicken feathers and thermoplastic matrices. Journal of Reinforced Plastics and Composites, 2013, 32, 1419-1429.	3.1	20
22	Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives. Polymers, 2020, 12, 3018.	4.5	20
23	Environmental impact assessment of sound absorbing nonwovens based on chicken feathers waste. Resources, Conservation and Recycling, 2019, 149, 489-499.	10.8	18
24	Changes in Properties of Cement and Lime Mortars When Incorporating Fibers from End-of-Life Tires. Fibers, 2016, 4, 7.	4.0	17
25	Effect of chemical treatments and additives on properties of chicken feathers thermoplastic biocomposites. Journal of Composite Materials, 2018, 52, 3637-3653.	2.4	14
26	Curing epoxy with ethylenediaminetetraacetic acid (EDTA) surface-functionalized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105248.	3.9	14
27	Reclaimed Rubber/Poly(ε-caprolactone) Blends: Structure, Mechanical, and Thermal Properties. Polymers, 2020, 12, 1204.	4.5	14
28	Properties and optimal manufacturing conditions of chicken feathers/poly(lactic acid) biocomposites. Journal of Composite Materials, 2016, 50, 1671-1683.	2.4	13
29	GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?. Materials, 2022, 15, 841.	2.9	13
30	Isothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites. Materials, 2021, 14, 2872.	2.9	10
31	Properties and optimal manufacturing conditions of chicken feathers thermoplastic biocomposites. Journal of Composite Materials, 2015, 49, 295-308.	2.4	5
32	GTR/NBR/Silica Composites Performance Properties as a Function of Curing System: Sulfur versus Peroxides. Materials, 2021, 14, 5345.	2.9	5
33	Towards Circular Economy by the Valorization of Different Waste Subproducts through Their Incorporation in Composite Materials: Ground Tire Rubber and Chicken Feathers. Polymers, 2022, 14, 1090.	4.5	4
34	Humanitarian Engineering in Spain: Ingenieros sin Fronteras. IEEE Technology and Society Magazine, 2010, 29, 12-19.	0.8	3
35	CHAPTER 2. Surface Treatment of Rubber Waste. RSC Green Chemistry, 2018, , 24-55.	0.1	2
36	Circular Economy Assessment in Recycling of LLDPE Bags According to European Resolution, Thermal and Structural Characterization. Polymers, 2022, 14, 754.	4.5	2

#	Article	IF	CITATIONS
37	Image Analysis of Elastomer Morphology in Toughened Thermoplastic and Thermoset Resins. Polymers and Polymer Composites, 2005, 13, 669-680.	1.9	1
38	Thermoplastic elastomers including ground tyre rubber in a thermoplastic matrix. World Journal of Engineering, 2011, 8, 165-170.	1.6	0
39	Reactive Processing and Functionalization of Ground Tire Rubber. , 2020, , 43-63.		ο