
David M Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3114855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring Influenza A Virus and Peptide Interaction Using Electrically Controllable DNA Nanolevers (Adv. Mater. Technol. 5/2022). Advanced Materials Technologies, 2022, 7, .	5.8	0
2	Proteasome activator 28γ (PA28γ) allosterically activates trypsin-like proteolysis by binding to the α-ring of the 20S proteasome. Journal of Biological Chemistry, 2022, 298, 102140.	3.4	4
3	Results of a Multicenter Feasibility Study of an Automated Bedside Glucose Monitoring System in the Burn Intensive Care Setting. Journal of Burn Care and Research, 2020, 41, 535-538.	0.4	2
4	Acetylation of Aβ ₄₀ Alters Aggregation in the Presence and Absence of Lipid Membranes. ACS Chemical Neuroscience, 2020, 11, 146-161.	3.5	11
5	Exercise training prevents the perivascular adipose tissue-induced aortic dysfunction with metabolic syndrome. Redox Biology, 2019, 26, 101285.	9.0	24
6	A Practical Review of Proteasome Pharmacology. Pharmacological Reviews, 2019, 71, 170-197.	16.0	245
7	Aortic dysfunction in metabolic syndrome mediated by perivascular adipose tissue TNFα―and NOX2â€dependent pathway. Experimental Physiology, 2018, 103, 590-603.	2.0	26
8	A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nature Communications, 2018, 9, 1097.	12.8	251
9	Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing. Nature Communications, 2018, 9, 2374.	12.8	27
10	Archaeal Unfoldase Counteracts Protein Misfolding Retinopathy in Mice. Journal of Neuroscience, 2018, 38, 7248-7254.	3.6	6
11	Could a Common Mechanism of Protein Degradation Impairment Underlie Many Neurodegenerative Diseases?. Journal of Experimental Neuroscience, 2018, 12, 117906951879467.	2.3	24
12	Proteasomal ATPases Hard at Work: The Inner Workings of a Protein Destruction Machine. FASEB Journal, 2018, 32, 526.42.	0.5	0
13	The Proteasomal ATPases Use a Slow but Highly Processive Strategy to Unfold Proteins. Frontiers in Molecular Biosciences, 2017, 4, 18.	3.5	18
14	Grainyhead-like 2 inhibits the coactivator p300, suppressing tubulogenesis and the epithelial–mesenchymal transition. Molecular Biology of the Cell, 2016, 27, 2479-2492.	2.1	30
15	A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers. Oncotarget, 2016, 7, 6159-6174.	1.8	149
16	ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nature Communications, 2015, 6, 8520.	12.8	51
17	ATP Binds to Proteasomal ATPases in Pairs with Distinct Functional Effects, Implying an Ordered Reaction Cycle. Cell, 2011, 144, 526-538.	28.9	174
18	A Conserved F Box Regulatory Complex Controls Proteasome Activity in Drosophila. Cell, 2011, 145, 371-382.	28.9	96

DAVID M SMITH

#	Article	IF	CITATIONS
19	Blm10 Protein Promotes Proteasomal Substrate Turnover by an Active Gating Mechanism. Journal of Biological Chemistry, 2011, 286, 42830-42839.	3.4	74
20	Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO Journal, 2011, 30, 3065-3077.	7.8	104
21	Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome–ATPase interactions. EMBO Journal, 2010, 29, 692-702.	7.8	100
22	Functional Consequences of Nucleotide Binding to the Proteasomal ATPases. FASEB Journal, 2010, 24, lb84.	0.5	0
23	Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal ATPases. Molecular Cell, 2008, 30, 360-368.	9.7	334
24	ATP-induced Structural Transitions in PAN, the Proteasome-regulatory ATPase Complex in Archaea. Journal of Biological Chemistry, 2007, 282, 22921-22929.	3.4	42
25	Docking of the Proteasomal ATPases' Carboxyl Termini in the 20S Proteasome's α Ring Opens the Gate for Substrate Entry. Molecular Cell, 2007, 27, 731-744.	9.7	460
26	Proteasomes and their associated ATPases: A destructive combination. Journal of Structural Biology, 2006, 156, 72-83.	2.8	98
27	Differential effects of proteasome inhibitors on cell cycle and apoptotic pathways in human YT and Jurkat cells. Journal of Cellular Biochemistry, 2006, 97, 122-134.	2.6	13
28	Naturally Occurring Proteasome Inhibitors from Mate Tea (Ilex paraguayensis) Serve as Models for Topical Proteasome Inhibitors. Journal of Investigative Dermatology, 2005, 125, 207-212.	0.7	31
29	Exploiting the Ubiquitin-Proteasome Pathway for Anticancer Drug Discovery: Unanswered Questions and Future Directions. Letters in Drug Design and Discovery, 2005, 2, 74-81.	0.7	5
30	ATP Binding to PAN or the 26S ATPases Causes Association with the 20S Proteasome, Gate Opening, and Translocation of Unfolded Proteins. Molecular Cell, 2005, 20, 687-698.	9.7	230
31	Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochemical Pharmacology, 2003, 66, 965-976.	4.4	161
32	Overexpression of interleukin-2 receptor ? in a human squamous cell carcinoma of the head and neck cell line is associated with increased proliferation, drug resistance, and transforming ability. Journal of Cellular Biochemistry, 2003, 89, 824-836.	2.6	19
33	Docking studies and model development of tea polyphenol proteasome inhibitors: Applications to rational drug design. Proteins: Structure, Function and Bioinformatics, 2003, 54, 58-70.	2.6	111
34	Interruption of tumor cell cycle progression through proteasome inhibition: implications for cancer therapy. Progress in Cell Cycle Research, 2003, 5, 441-6.	0.9	26
35	Inhibition of Bcl-XL Phosphorylation by Tea Polyphenols or Epigallocatechin-3-Gallate Is Associated with Prostate Cancer Cell Apoptosis. Molecular Pharmacology, 2002, 62, 765-771.	2.3	34
36	A Novel β-Lactam Antibiotic Activates Tumor Cell Apoptotic Program by Inducing DNA Damage. Molecular Pharmacology, 2002, 61, 1348-1358.	2.3	68

DAVID M SMITH

#	Article	IF	CITATIONS
37	Synthetic Analogs of Green Tea Polyphenols as Proteasome Inhibitors. Molecular Medicine, 2002, 8, 382-392.	4.4	110
38	Synthetic analogs of green tea polyphenols as proteasome inhibitors. Molecular Medicine, 2002, 8, 382-92.	4.4	47
39	Ester Bond-containing Tea Polyphenols Potently Inhibit Proteasome Activity in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 13322-13330.	3.4	466
40	Green tea polyphenol epigallocatechin inhibits DNA replication and consequently induces leukemia cell apoptosis. International Journal of Molecular Medicine, 2001, 7, 645-52.	4.0	34
41	Regulation of tumor cell apoptotic sensitivity during the cell cycle (Review) International Journal of Molecular Medicine, 2000, 6, 503-7.	4.0	28
42	Measuring Influenza A Virus and Peptide Interaction Using Electrically Controllable DNA Nanolevers. Advanced Materials Technologies, 0, , 2101141.	5.8	8