Bin Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/3114343/bin-zhao-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

110
papers

2,544
citations

h-index

45
g-index

112
2,728
ext. papers

2,728
ext. citations

3,66
avg, IF
L-index

#	Paper	IF	Citations
110	Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. <i>Advanced Functional Materials</i> , 2015 , 25, 2920-2927	15.6	123
109	Efficient triphenylamine dyes for solar cells: Effects of alkyl-substituents and Econjugated thiophene unit. <i>Dyes and Pigments</i> , 2009 , 83, 187-197	4.6	110
108	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(p-tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3280-3286	3.8	105
107	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 23291-6	9.5	101
106	Chemically modified graphene oxides as a hole transport layer in organic solar cells. <i>Chemical Communications</i> , 2012 , 48, 8078-80	5.8	99
105	Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. <i>Chemical Communications</i> , 2009 , 2499-501	5.8	93
104	Low bandgap isoindigo-based copolymers: design, synthesis and photovoltaic applications. <i>Polymer Chemistry</i> , 2011 , 2, 1156-1162	4.9	63
103	Development of a new benzo(1,2-b:4,5-bithiophene-based copolymer with conjugated dithienylbenzothiadiazole-vinylene side chains for efficient solar cells. <i>Chemical Communications</i> , 2011 , 47, 9381-3	5.8	62
102	Transient Rechargeable Batteries Triggered by Cascade Reactions. <i>Nano Letters</i> , 2015 , 15, 4664-71	11.5	60
101	Flexible Counter Electrodes Based on Mesoporous Carbon Aerogel for High-Performance Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22615-22621	3.8	60
100	Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties. <i>Organic Electronics</i> , 2011 , 12, 125-135	3.5	59
99	Effect of 3D Lacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. <i>Macromolecules</i> , 2008 , 41, 5716-5727	2 5.5	57
98	Synthesis and photovoltaic properties of polythiophene stars with porphyrin core. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1140-1146		54
97	Synthesis and characterization of porphyrin-terthiophene and oligothiophene Etonjugated copolymers for polymer solar cells. <i>European Polymer Journal</i> , 2010 , 46, 1084-1092	5.2	54
96	Effects of aromatic Econjugated bridges on optical and photovoltaic properties of N,N-diphenylhydrazone-based metal-free organic dyes. <i>Organic Electronics</i> , 2011 , 12, 1992-2002	3.5	52
95	Benzodifuran-Based ©onjugated Copolymers for Bulk Heterojunction Solar Cells. <i>Macromolecules</i> , 2010 , 43, 8058-8062	5.5	50
94	Stainless steel mesh-based flexible quasi-solid dye-sensitized solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1005-1010	6.4	48

(2008-2010)

Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2010 , 87, 181-187	4.6	48	
Poly[N-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] Coated Aqueous Dispersed Thermosensitive Fe3O4 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10090-10096	3.8	47	
Synthesis and Photovoltaic Properties of Copolymers Based on Benzo[1,2-b:4,5-b?]dithiophene and Thiophene with Different Conjugated Side Groups. <i>Macromolecules</i> , 2012 , 45, 2359-2366	5.5	46	
Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. <i>Polymer Chemistry</i> , 2017 , 8, 5795-5802	4.9	43	
Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. <i>Chemical Communications</i> , 2013 , 49, 3857-9	5.8	41	
Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3-benzothiadiazole moieties for bulk heterojunction solar cells. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 2685-2692	2.5	41	
The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2011 , 88, 75-83	4.6	40	
Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2011 , 91, 404-412	4.6	40	
Effect of oxadiazole side chains based on alternating fluorenethiophene copolymers for photovoltaic cells. <i>European Polymer Journal</i> , 2009 , 45, 2079-2086	5.2	34	
Effects of the acceptors in triphenylamine-based DA? A dyes on photophysical, electrochemical, and photovoltaic properties. <i>Journal of Power Sources</i> , 2014 , 246, 831-839	8.9	32	
Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived Etonjugated bridge. <i>Dyes and Pigments</i> , 2012 , 92, 1042-1051	4.6	32	
Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. <i>Organic Electronics</i> , 2012 , 13, 560-569	3.5	32	
Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. <i>Carbon</i> , 2014 , 77, 113-121	10.4	28	
Benzodifuran-containing well-defined Econjugated polymers for photovoltaic cells. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 2935-2943	2.5	28	
Hyperbranched conjugated polymers with donor-Eacceptor architecture as organic sensitizers for dye-sensitized solar cells. <i>European Polymer Journal</i> , 2010 , 46, 2033-2041	5.2	28	
Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22913		26	
Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. <i>Sensors and Actuators B: Chemical</i> , 2008 , 132, 60-66	8.5	26	
The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors. <i>Composites Science and Technology</i> , 2008 , 68, 1357-1362	8.6	25	
	Poly[N-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] Coated Aqueous Dispersed Thermosensitive Fe3O4 Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 10090-10096 Synthesis and Photovoltaic Properties of Copolymers Based on Benzo[1,2-b:4,5-b?]dithiophene and Thiophene with Different Conjugated Side Groups. Macromolecules, 2012, 45, 2359-2366 Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Palymer Chemistry, 2017, 8, 5795-5802 Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. Chemical Communications, 2013, 49, 3857-9 Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3-benzothiadiazole moieties for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 2685-2692 The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2011, 88, 75-83 Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 404-412 Effect of oxadiazole side chains based on alternating fluorenethiophene copolymers for photovoltaic cells. European Polymer Journal, 2009, 45, 2079-2086 Effects of the acceptors in triphenylamine-based D&28 dyes on photophysical, electrochemical, and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839 Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived Econjugated bridge. Dyes and Pigments, 2012, 92, 1042-1051 Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. Organic Electronics, 2012, 13, 560-569 Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. Carbon, 2014, 77, 113-121 Benzodifuran-containing well-defined Econjugated polymers for photovoltaic cells. Journal of Polymer Science Part A, 2012, 50, 2935-2943 Electrical response a	Poly[N-isopropy acry amide-co-3-(trimethoxysilyl)-propylmethacrylate] Coated Aqueous Dispersed Thermosensitive Fe3O4 Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 10090-10096 Synthesis and Photovoltaic Properties of Copolymers Based on Benzo[1,2-b:4,5-b7]dithiophene and Thiophene with Different Conjugated Side Groups. Macromolecules, 2012, 45, 2359-2366 Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polymer Chemistry, 2017, 8, 5795-5802 Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. Chemical Communications, 2013, 49, 3857-9 Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3-benzothiadiazole moieties for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 2685-2692 The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2011, 88, 75-83 Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 404-412 Effect of oxadiazole side chains based on alternating fluorenethiophene copolymers for photovoltaic cells. European Polymer Journal, 2009, 45, 2079-2086 Effects of the acceptors in triphenylamine-based Da?B. dyes on photophysical, electrochemical, and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839 Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived Econjugated bridge. Dyes and Pigments, 2012, 92, 1042-1051 Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. Organic Electronics, 2012, 13, 560-569 Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. Carbon, 2014, 77, 113-121 Departicular properties and photovoltaic performances of conjugated polymers for photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 22913 Electric	PolyIN-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] Coated Aqueous Dispersed Thermosensitive Fe304 Nanoparticles. Journal of Physical Chemistry, C2009, 113, 10090-10096 38 47 Synthesis and Photovoltaic Properties of Copplymers Based on Benzo[1,2-bx4,5-b7]dithiophene and Different Conjugated Side Groups. Macromolecules, 2012, 45, 2359-2366 55 46 Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polymer Chemistry, 2017, 8, 5795-5802 49 43 Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. Chemical Communications, 2013, 49, 3857-9 58 41 Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3-benzothiadiazole moieties for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 2685-2692 25 41 The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2011, 88, 75-83 Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes and Pigments, 2011, 191, 404-412 Effect of oxadiazole side chains based on alternating fluorenethiophene copolymers for photovoltaic cells. European Polymer Journal, 2009, 45, 2079-2086 52 34 Effects of the acceptors in triphenylamine-based DAPA dyes on photophysical, electrochemical, and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839 Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived Ronjugated bridge. Oyes and Pigments, 2012, 92, 1042-1051 Benzodifuran-containing well-defined Ronjugated polymers for dye-sensitized solar cells. Organic Electronics, 2012, 13, 560-569 Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. Carbon, 2014, 77, 113-121 Benzodifuran-containing well-defined Ronjugated polymers for photovoltaic cells. Journal of Polymer Journal, 2014, 77, 113-121 Benzod

75	Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. <i>Journal of Energy Chemistry</i> , 2020 , 47, 196-202	12	22
74	Simultaneously improving the photovoltaic parameters of organic solar cells via isomerization of benzo[b]benzo[4,5]thieno[2,3-d]thiophene-based octacyclic non-fullerene acceptors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9684-9692	13	21
73	Polymer with a 3D conductive network: a thickness-insensitive electron transport layer for inverted polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12969-12973	13	21
72	Synthesis, characterization, and photovoltaic performance of the polymers based on thiophene-2,5-bis((2-ethylhexyl)oxy) benzene-thiophene. <i>Organic Electronics</i> , 2015 , 20, 142-149	3.5	20
71	Synthesis and characterization of trivalent metal porphyrin with NCS ligand for application in dye-sensitized solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1174-1181	6.4	20
70	Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)3phen. <i>Materials Letters</i> , 2008 , 62, 2419-2421	3.3	20
69	Synthesis and photovoltaic properties of copolymers based on benzo[1,2-b:4,5-b?]dithiophene and thiophene with electron-withdrawing side chains. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 3604-361	4 ^{2.5}	19
68	Alkynyl-Functionalized Pyrene-Cored Perylene Diimide Electron Acceptors for Efficient Nonfullerene Organic Solar Cells. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3918-3926	6.1	18
67	Development of a new diindenopyrazineBenzotriazole copolymer for multifunctional application in organic field-effect transistors, polymer solar cells and light-emitting diodes. <i>Organic Electronics</i> , 2012 , 13, 1671-1679	3.5	18
66	Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11734-11740	13	17
65	Rational design of truxene-bridged PDI trimers as acceptors for efficient organic solar cells. <i>Dyes and Pigments</i> , 2018 , 156, 276-284	4.6	15
64	Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells. <i>Dyes and Pigments</i> , 2016 , 124, 222-231	4.6	14
63	Synthesis and photovoltaic properties of the acceptor pended push pull conjugated polymers incorporating thieno[3,2B] thiophene in the backbone chain or side chains. <i>Dyes and Pigments</i> , 2015 , 120, 44-51	4.6	14
62	A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6929-6934	13	14
61	A2-D-A1-D-A2-type small molecule acceptors incorporated with electron-deficient core for non-fullerene organic solar cells. <i>Solar Energy</i> , 2020 , 197, 511-518	6.8	14
60	Synergistic Effect of Fluorine Substitution and Thio-Alkylation on Photovoltaic Performances of Alternating Conjugated Polymers Based on Alkylthio-Substituted Benzothiadiazole-Quaterthiophene. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2192-2199	6.1	14
59	Controlling the morphology and hole mobility of terpolymers for polymer solar cells. <i>RSC Advances</i> , 2016 , 6, 13177-13184	3.7	14
58	Synthesis and optoelectronic properties of liquid-crystalline copolymers based on fluorene and triphenylamine-containing oligo(p-phenylenevinylene) derivatives for white light emission. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 3296-3308	2.5	14

(2006-2009)

Synthesis and photovoltaic properties of poly(p-phenylenevinylene) derivatives with two triphenylamine and bithiophene conjugated side chains. <i>European Polymer Journal</i> , 2009 , 45, 2726-2731	5.2	13
A trilobal non-fullerene electron acceptor based on benzo[1,2- b :3,4- b ?:5,6- b ?] trithiophene and perylenediimide for polymer solar cells. <i>Synthetic Metals</i> , 2017 , 227, 122-130	3.6	11
Rational design of a difluorobenzo[c]cinnoline-based low-bandgap copolymer for high-performance polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7300-7304	13	11
The effect of the length of alkyl side-chains on the molecular aggregation and photovoltaic performance of the isoindigo-based polymers. <i>Dyes and Pigments</i> , 2017 , 139, 403-411	4.6	11
Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. <i>Science China Chemistry</i> , 2013 , 56, 1573-1577	7.9	11
Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. <i>Journal of Materials Science</i> , 2011 , 46, 7482-7488	4.3	11
Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1198-1209		11
Synthesis and photovoltaic performances of 2,5-dioctyloxy-1,4-phenylenevinylene and terthiophene copolymers with di(p-tolyl)phenylamine and oxadiazole side groups. <i>European Polymer Journal</i> , 2010 , 46, 673-680	5.2	11
Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives: synthesis, photo- and electroluminescent properties. <i>European Polymer Journal</i> , 2008 , 44, 2348-2355	5.2	11
Synthesis and photovoltaic properties of conjugated copolymers with benzo[1,2-b:4,5-b?]dithiophene and thiadiazolo[3,4-c]pyridine moieties. <i>European Polymer Journal</i> , 2013 , 49, 2738-2747	5.2	10
Novel solution-processible small molecules based on benzo[1,2-b:3,4-b?:5,6-b??]trithiophene for effective organic photovoltaics with high open-circuit voltage. <i>RSC Advances</i> , 2015 , 5, 14540-14546	3.7	10
Synergetic effect of efficient energy transfer and 3D pi-pi stack for white emission based on the block copolymers containing nonconjugated spacer. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 4203-8	3.4	10
Bandgap and Molecular-Energy-Level Control of Conjugated-Polymer Photovoltaic Materials Based on 6,12-Dihydro-diindeno[1,2-b;10,20-e]pyrazine. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 114	7 - 16157	, 9
Synthesis and white electroluminescent properties of multicomponent copolymers containing polyfluorene, oligo(phenylenevinylene), and porphyrin derivatives. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5291-5303	2.5	9
Development of s-tetrazine-based polymers for efficient polymer solar cells by controlling appropriate molecular aggregation. <i>Dyes and Pigments</i> , 2019 , 171, 107717	4.6	8
Synthesis and photovoltaic properties of organic small molecules containing triphenylamine and benzothiadiazole moieties with different terminal groups. <i>Dyes and Pigments</i> , 2013 , 98, 464-470	4.6	8
Analysis of gas sensing behaviors of carbon black/waterborne polyurethane composites in low concentration organic vapors. <i>Journal of Materials Science</i> , 2007 , 42, 4575-4580	4.3	8
Effect of Soft Segments of Waterborne Polyurethane on Organic Vapor Sensitivity of Carbon Black Filled Waterborne Polyurethane Composites. <i>Polymer Journal</i> , 2006 , 38, 799-806	2.7	8
	triphenylamine and bithiophene conjugated side chains. <i>European Polymer Journal</i> , 2009, 45, 2726-2731. A trilobal non-fullerene electron acceptor based on benzo[1,2-b:3,4-b:5,6-b?] trithiophene and perylenediimide for polymer solar cells. <i>Synthetic Metals</i> , 2017, 227, 122-130. Rational design of a difluorobenzo[c]cinnoline-based low-bandgap copolymer for high-performance polymer solar cells. <i>Journal of Materials Chemistry</i> , 4, 2017, 5, 7300-7304. The effect of the length of alkyl side-chains on the molecular aggregation and photovoltaic performance of the isolindigo-based polymers. <i>Dyes and Pigments</i> , 2017, 139, 403-411. Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. <i>Science China Chemistry</i> , 2013, 56, 1573-1577. Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. <i>Journal of Materials Science</i> , 2011, 46, 7482-7488. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. <i>Science in China Series B: Chemistry</i> , 2009, 52, 1198-1209. Synthesis and photovoltaic performances of 2,5-dioctyloxy-1,4-phenylenevinylene and terthiophene copolymers with di(p-tolyl)phenylamine and oxadiazole side groups. <i>European Polymer Journal</i> , 2010, 46, 673-680. Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives: synthesis, photo- and electroluminescent properties. <i>European Polymer Journal</i> , 2008, 44, 2348-2355. Synthesis and photovoltaic properties of conjugated copolymers with benzo[1,2-b-3,5-b]dithiophene and thiadiazolo]3,4-c]pyridine moieties. <i>European Polymer Journal</i> , 2013, 49, 2738-2747. Novel solution-processible small molecules based on benzo[1,2-b-3,4-b:5,6-b??]trithiophene for effective organic photovoltaics with high open-circuit voltage. <i>RSC Advances</i> , 2015, 5, 14540-14546. Synergetic effect of efficient energy transfer and 3D pipi stack for white emission based on the block copolymers containing nonconjug	triphenylamine and bithiophene conjugated side chains. European Polymer Journal, 2009, 45, 2726-2731 522 A trilobal non-fullerene electron acceptor based on benzo[1,2-b:3,4-b:2,6-b:2] trithiophene and perylenediimide for polymer solar cells. Synthetic Metals, 2017, 227, 122-130 3.6 Rational design of a difluorobenzo[c]cinnoline-based low-bandgap copolymer for high-performance polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 7300-7304 The effect of the length of alkyl side-chains on the molecular aggregation and photovoltaic performance of the isolindigo-based polymers. Dyes and Pigments, 2017, 139, 403-411 Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. Science China Chemistry, 2013, 56, 1573-1577 Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. Journal of Materials Science, 2011, 46, 7482-7488 Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Science in China Series B: Chemistry, 2009, 52, 1198-1209 Synthesis and photovoltaic performances of 2,5-dioctyloxy-1,4-phenylenevinylene and tetrhiophene copolymers with di(p-tolyl)phenylamine and oxadiazole side groups. European Polymer Journal, 2010, 46, 673-680 Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives: synthesis, photo- and electroluminescent properties. European Polymer Journal, 2008, 44, 2348-2355 Synthesis and photovoltaic properties of conjugated copolymers with benzo[1,2-b;4,5-b;7,6-b;7]trithiophene for effective organic photovoltaic properties of conjugated copolymers with benzo[1,2-b;4,6-b;7,6-b;7]trithiophene for effective organic photovoltaics with high open-circuit voltage. RSC Advances, 2015, 5, 14540-14546 Synthesis and photovoltaic with high open-circuit voltage. RSC Advances, 2015, 5, 14540-14546 Synthesis and photovoltaic properties of conjugated Polymer Photovoltaic Materials Based on 6,12-bihydro-diindenol[1,

39	Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance. <i>Solar Energy</i> , 2020 , 208, 866-872	6.8	8
38	Cationic Polyelectrolytes with Alkylsulfonate Counterions as a Cathode Interface Layer for High-Performance Polymer Solar Cells. <i>ACS Applied Materials & Distriction of the Performance Polymer Solar Cells.</i> ACS Applied Materials & District Polymer Solar Cells. ACS Applied Materials & District Polymer Solar Cells. ACS Applied Materials & District Polymer Solar Cells.	9.5	8
37	Improved photovoltaic performance of D-A1-D-A2 terpolymer via synergetic effects of copolymerization and blending. <i>Dyes and Pigments</i> , 2019 , 160, 79-85	4.6	7
36	Synthesis and photovoltaic properties of phthalocyanine end-capped copolymers with conjugated dithienylbenzothiadiazolelinylene side chains. <i>European Polymer Journal</i> , 2012 , 48, 1805-1813	5.2	7
35	Synthesis, characterization, and photophysical properties of novel poly(p-phenylene vinylene) derivatives with conjugated thiophene as side chains. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 338	3 7-3 39	4 7
34	Simultaneously Enhancing the Jsc and Voc of Ternary Organic Solar Cells by Incorporating a Medium-Band-Gap Acceptor. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3480-3486	6.1	7
33	2-Ethynyl-6-methylthieno[3,2- b]thiophene as an efficient [spacer for porphyrin-based dyes. <i>Dyes and Pigments</i> , 2015 , 122, 168-176	4.6	6
32	Rapid Dissolving-Debonding Strategy for Optically Transparent Paper Production. <i>Scientific Reports</i> , 2015 , 5, 17703	4.9	6
31	Poly(p-phenylenevinylene) derivatives with conjugated thiophene side chains: Synthesis, photophysics and photovoltaics. <i>Synthetic Metals</i> , 2010 , 160, 1291-1298	3.6	6
30	Synthesis and electroluminescent properties of substituted benzoate bis (8-hydroxyquinaldine) gallium (III) complexes. <i>Journal of Materials Science</i> , 2004 , 39, 1405-1406	4.3	6
29	Preparation of Polymer/TiO2Hybrid Nanofibers Microporous Membranes and Its Application in Dye-Sensitized Solar Cells. <i>Acta Chimica Sinica</i> , 2012 , 70, 1604	3.3	6
28	Improved photovoltaic properties of PM6-based terpolymer donors containing benzothiadiazole with a siloxane-terminated side chain. <i>Polymer Chemistry</i> , 2020 , 11, 6178-6186	4.9	6
27	Improved photovoltaic properties of the copolymers based on diketopyrrolopyrrole with broad absorption and high open-circuit voltage. <i>Dyes and Pigments</i> , 2016 , 133, 16-24	4.6	6
26	Regular terpolymers with benzothiadiazole side groups for improving the performances of polymer solar cells. <i>Dyes and Pigments</i> , 2017 , 143, 261-269	4.6	5
25	Benzothienoisoindigo-based polymers for efficient polymer solar cells with an open-circuit voltage of 0.96 V. <i>Polymer</i> , 2019 , 175, 339-346	3.9	5
24	Synthesis and Photovoltaic Properties of the Copolymers Based on Carbazole with Tetrathiophene Porphyrin Side Chains Linked by a Flexible Alkyl-interval. <i>Chinese Journal of Chemistry</i> , 2018 , 36, 599-60-	4 ^{4.9}	5
23	Two A2-D-A1-D-A2 small molecules with isoindigo as the central core for efficient organic photovoltaics. <i>Dyes and Pigments</i> , 2018 , 156, 403-409	4.6	5
22	Synthesis and photovoltaic properties of new branchlike organic dyes containing benzothiadiazole or triphenylamine-linked consecutive vinylenes units. <i>Dyes and Pigments</i> , 2013 , 97, 405-411	4.6	5

21	EFFICIENT TIO2 NANOPARTICLES/NANORODS COMPOSITE ELECTRODES FOR DYE-SENSITIZED SOLAR CELLS. <i>Nano</i> , 2012 , 07, 1250010	1.1	5	
20	Non-conjugated electrolytes as thickness-insensitive interfacial layers for high-performance organic solar cells. <i>Journal of Materials Chemistry A</i> ,	13	5	
19	An asymmetric small-molecule donor enables over 18% efficiency in ternary organic solar cells. <i>Journal of Materials Chemistry A</i> ,	13	5	
18	An axisymmetric heptacyclic lactam unit for efficient polymer solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6911-6915	7.1	4	
17	Phenylenevinylene copolymers of dihexylthienylbenzothiadiazole and triphenylamine or tetraphenylbenzidine: synthesis, characterization and photovoltaic properties. <i>Journal of Materials Science</i> , 2012 , 47, 5706-5714	4.3	4	
16	Study on copolymerization behavior of 2-substituted 4-methylene-1,3-dioxolane with maleic anhydride and acrylonitrile. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 2149-2156	2.5	4	
15	Organic solar cells with efficiency of 17.6% and fill factor of 78.3% based on perylene-diimide derivative as cathode interface layer. <i>Chemical Engineering Journal</i> , 2022 , 443, 136455	14.7	4	
14	Polymer with conjugated alkylthiophenylthienyl side chains for efficient photovoltaic cells. <i>Organic Electronics</i> , 2017 , 48, 298-307	3.5	3	
13	Design and synthesis of the polymers based on alkylthiophenyl side chains and variant acceptor moieties for polymer solar cells. <i>RSC Advances</i> , 2016 , 6, 95306-95313	3.7	3	
12	Effects of spin-coating speed on the morphology and photovoltaic performance of the diketopyrrolopyrrole-based terpolymer. <i>Science China Chemistry</i> , 2016 , 59, 466-471	7.9	2	
11	Synthesis and photovoltaic properties of a phenylenevinylene copolymer with dithienylbenzothiadiazole and bis(di(p-tolyl)phenylamino)phenylene units. <i>European Polymer Journal</i> , 2011 , 47, 2424-2431	5.2	2	
10	Synthesis and photovoltaic performance of dye-sensitizers based on thiophene-triphenylamine with varied substituents. <i>Scientia Sinica Chimica</i> , 2011 , 41, 982-988	1.6	2	
9	SYNTHESIS AND ELECTROLUMINESCENT PROPERTIES OF A POLYFLUORENE GRAFTED OLIGO(PHENYLENEVINYLENE DERIVATIVE WITH TWO TRIPHENYLAMINE SIDE GROUP). <i>Acta Polymerica Sinica</i> , 2010 , 010, 501-507		2	
8	Synthesis and Photovoltaic Properties of Conjugated Polymers Based on 1,2,4-Triazole Derivatives. <i>Acta Chimica Sinica</i> , 2012 , 70, 2433	3.3	2	
7	Tuning the photovoltaic performances of the terpolymers based on thiophene-benzene-thiophene via the modification of alkyl side chains. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	1	
6	Preventing isomerization of the fused-ring core by introducing a methyl group for efficient non-fullerene acceptors. <i>Journal of Materials Chemistry C</i> ,	7.1	1	
5	Ternary polymerization strategy to approach 12% efficiency in all-polymer solar cells processed by green solvent and additive. <i>Chemical Engineering Journal</i> , 2022 , 429, 132407	14.7	1	
4	Polymerized naphthalimide derivatives as remarkable electron-transport layers for inverted organic solar cells <i>Macromolecular Rapid Communications</i> , 2022 , e2200119	4.8	1	

3	Synthesis and photovoltaic properties of the polymers base on thiophene derivatives with electron-deficient 3-nitro-1,2,4-triazole side chains. <i>Thin Solid Films</i> , 2013 , 539, 267-273	2.2
2	Improved photovoltaic properties of copolymer donors by regulating alkyl and alkylsilyl side chains. Dyes and Pigments, 2022, 197, 109842	4.6

Synthesis and Optoelectronic Properties of A-D-A Type Small Molecule Acceptors Containing
Isatin-Fused Acenaphthenequinone Imide Terminal Groups. *Chinese Journal of Organic Chemistry*,
2021, 2019