Ferhunde Atay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/311419/publications.pdf

Version: 2024-02-01

41 papers

1,117 citations

430874 18 h-index 33 g-index

42 all docs 42 docs citations 42 times ranked 1108 citing authors

#	Article	IF	CITATIONS
1	The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Materials Chemistry and Physics, 2005, 94, 103-108.	4.0	162
2	The effect of In doping on some physical properties of CdS films. Materials Science in Semiconductor Processing, 2003, 6, 197-203.	4.0	89
3	Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique. International Journal of Hydrogen Energy, 2009, 34, 5249-5254.	7.1	84
4	In doped CdO films: Electrical, optical, structural and surface properties. International Journal of Hydrogen Energy, 2009, 34, 5260-5266.	7.1	75
5	CdS:Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration. Materials Letters, 2003, 57, 3461-3472.	2.6	58
6	Some physical properties of copper oxide films: The effect of substrate temperature. Materials Chemistry and Physics, 2008, 111, 351-358.	4.0	57
7	Electrical, structural and surface properties of fluorine doped tin oxide films. Applied Surface Science, 2010, 256, 6586-6591.	6.1	55
8	Optical, structural and surface characterization of ultrasonically sprayed CdO:F films. Journal of Alloys and Compounds, 2011, 509, 1947-1952.	5 . 5	50
9	Optical characterization and determination of carrier density of ultrasonically sprayed CdS:Cu films. Applied Surface Science, 2010, 256, 4299-4303.	6.1	46
10	The effect of Zn concentration on some physical properties of tin oxide films obtained by ultrasonic spray pyrolysis. Materials Letters, 2004, 58, 3686-3693.	2.6	43
11	The optical, structural and morphological properties of ultrasonically sprayed ZnO:Mn films. Semiconductor Science and Technology, 2006, 21, 1620-1626.	2.0	43
12	The effect of Sn concentration on some physical properties of zinc oxide films prepared by ultrasonic spray pyrolysis. Journal of Materials Science, 2005, 40, 1909-1915.	3.7	37
13	Optical, structural and surface characterization of CdO:Mg films. Journal of Materials Science: Materials in Electronics, 2011, 22, 492-498.	2.2	35
14	Optical characterization of SnO2:F films by spectroscopic ellipsometry. Journal of Non-Crystalline Solids, 2010, 356, 2192-2197.	3.1	27
15	Characterization of Mn-incorporated CdO films grown by ultrasonic spray pyrolysis. Semiconductor Science and Technology, 2006, 21, 579-585.	2.0	25
16	Growth and Characterization of Zn-Incorporated Copper Oxide Films. Journal of Electronic Materials, 2009, 38, 787-796.	2.2	23
17	Wide-bandgap modification of polycrystalline ZnO using Sn component on the basis of developing quantum-well hetero-structure. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 290-295.	2.7	22
18	On the role of Al in ultrasonically sprayed ZnO films. Materials Chemistry and Physics, 2017, 185, 137-142.	4.0	19

#	Article	IF	Citations
19	Transparent conductive ZnO thin films grown by chemical spray pyrolysis: the effect of Mg. Journal of Materials Science: Materials in Electronics, 2016, 27, 8478-8485.	2.2	17
20	Evaluation of optical parameters and characterization of ultrasonically sprayed MgO films by spectroscopic ellipsometry. Applied Surface Science, 2013, 265, 709-713.	6.1	16
21	Characterization of ZnO-SnO2 oxide systems produced by ultrasonic spray pyrolysis. Solar Energy, 2019, 193, 666-675.	6.1	16
22	The effect of the structural, optical, and surface properties of anatase-TiO2 film on photocatalytic degradation of methylene blue organic contaminant. Ionics, 2019, 25, 4481-4492.	2.4	13
23	Some physical properties of In doped copper oxide films produced by ultrasonic spray pyrolysis. Current Applied Physics, 2012, 12, 890-895.	2.4	10
24	Production and characterization of Cu2SnS3 films for solar cell applications: The effect of the sulfurization temperature on CuS secondary phase. Solar Energy, 2021, 214, 179-188.	6.1	10
25	Some Physical Properties of CdO Thin Films Used as Window Material in Photovoltaic Solar Cells. International Journal of Green Energy, 2004, 1, 353-364.	3.8	9
26	Synthesis, characterization and ellipsometric study of ultrasonically sprayed Co3O4 films. Applied Physics A: Materials Science and Processing, 2015, 121, 245-254.	2.3	8
27	Structural, Optical and Surface Properties of Multilayer Anatase-TiO2 Films Grown by Sol–Gel Spin Coating Technique. Journal of Electronic Materials, 2020, 49, 5542-5551.	2.2	8
28	Production and Characterization of (004) Oriented Single Anatase TiO2 Films. Journal of Electronic Materials, 2018, 47, 1601-1610.	2.2	7
29	Structural, optical and surface properties of sol–gel-derived boron-doped ZnO films for photocatalytic applications. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	7
30	The effect of Al element on structural, optical, electrical, surface and photocatalytic properties of Sol-gelÂderived ZnO films. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	7
31	The effect of sulphur amount in sulphurization stage on secondary phases in Cu2SnS3(CTS) films. Current Applied Physics, 2021, 26, 64-71.	2.4	6
32	Preparation and characterization of aluminum-incorporated cadmium oxide films. Materials Science in Semiconductor Processing, 2010, 13, 109-114.	4.0	5
33	Characterization of chemically sprayed CdO films on borate and phosphate glass substrates produced by melt-quenching technique. Materials Chemistry and Physics, 2013, 138, 327-332.	4.0	5
34	Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films. Modern Physics Letters B, 2016, 30, 1650171.	1.9	5
35	The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst. Ionics, 2019, 25, 3823-3836.	2.4	5
36	Structural, optical, surface, and photocatalytic properties of SnO2 films produced by ultrasonic spray pyrolysis. Journal of Sol-Gel Science and Technology, 2022, 102, 303-312.	2.4	4

#	Article	IF	CITATIONS
37	The effect of spinning cycle on structural, optical, surface and photocatalytic properties of sol–gel derived ZnO films. Journal of Sol-Gel Science and Technology, 2021, 100, 299-309.	2.4	3
38	Al and B co-doped ZnO samples as an alternative to ITO for transparent electronics applications. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	3
39	Influence of Thermal Process on Physical Properties of ZnO Films Prepared by Spray Pyrolysis. Acta Physica Polonica A, 2014, 126, 1331-1337.	0.5	2
40	Ellipsometric Investigation of Optical Parameters and Characterization of Spray Pyrolysis-Derived ZnO Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4247-4254.	2.2	1
41	Production and Characterization of Cu <inf>2</inf> SnS <inf>3</inf> Absorber Layers for Photovoltaic Solar Cell Applications., 2018,,.		O