Jaemin Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3113439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ruthenium Nanoparticles on Cobaltâ€Doped 1T′ Phase MoS ₂ Nanosheets for Overall Water Splitting. Small, 2020, 16, e2000081.	5.2	82
2	Phase Evolution of Re _{1–<i>x</i>} Mo <i>_x</i> Se ₂ Alloy Nanosheets and Their Enhanced Catalytic Activity toward Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 11995-12005.	7.3	59
3	Orthorhombic NiSe ₂ Nanocrystals on Si Nanowires for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 33198-33204.	4.0	49
4	Thickness-dependent bandgap and electrical properties of GeP nanosheets. Journal of Materials Chemistry A, 2019, 7, 16526-16532.	5.2	45
5	Intercalated complexes of 1T′-MoS ₂ nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2334-2343.	5.2	41
6	Two-dimensional MoS ₂ /Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale, 2019, 11, 14266-14275.	2.8	32
7	Intercalation of cobaltocene into WS ₂ nanosheets for enhanced catalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 8101-8106.	5.2	26
8	Two dimensional MoS2 meets porphyrins via intercalation to enhance the electrocatalytic activity toward hydrogen evolution. Nanoscale, 2019, 11, 3780-3785.	2.8	21
9	Anisotropic alloying of Re _{1â^x} Mo _x S ₂ nanosheets to boost the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 25131-25141.	5.2	21
10	Phase Controlled Growth of Cd ₃ As ₂ Nanowires and Their Negative Photoconductivity. Nano Letters, 2020, 20, 4939-4946.	4.5	20
11	Nickel phosphide polymorphs with an active (001) surface as excellent catalysts for water splitting. CrystEngComm, 2019, 21, 1143-1149.	1.3	19
12	Two-dimensional MoS ₂ –melamine hybrid nanostructures for enhanced catalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 22571-22578.	5.2	14
13	Synthesis of Polytypic Gallium Phosphide and Gallium Arsenide Nanowires and Their Application as Photodetectors. ACS Omega, 2019, 4, 3098-3104.	1.6	12
14	GaAsSe Ternary Alloy Nanowires for Enhanced Photoconductivity. Journal of Physical Chemistry C, 2019, 123, 3908-3915.	1.5	3
15	Polymorphic Ga ₂ S ₃ nanowires: phase-controlled growth and crystal structure calculations. Nanoscale Advances, 2022, 4, 3218-3225.	2.2	1