Alfredo Castello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3113363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uncovering viral RNA–host cell interactions on a proteome-wide scale. Trends in Biochemical Sciences, 2022, 47, 23-38.	3.7	20
2	RNA-binding protein Mub1 and the nuclear RNA exosome act to fine-tune environmental stress response. Life Science Alliance, 2022, 5, e202101111.	1.3	1
3	Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. ELife, 2022, 11, .	2.8	33
4	Melanoma RBPome identification reveals PDIA6 as an unconventional RNA-binding protein involved in metastasis. Nucleic Acids Research, 2022, 50, 8207-8225.	6.5	9
5	The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Seminars in Cell and Developmental Biology, 2021, 111, 108-118.	2.3	13
6	Global analysis of RNA-binding protein dynamics by comparative and enhanced RNA interactome capture. Nature Protocols, 2021, 16, 27-60.	5.5	31
7	Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports, 2021, 35, 109020.	2.9	64
8	Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Molecular Cell, 2021, 81, 2851-2867.e7.	4.5	108
9	The antiviral state has shaped the CpG composition of the vertebrate interferome to avoid self-targeting. PLoS Biology, 2021, 19, e3001352.	2.6	18
10	A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374, eabj3624.	6.0	124
11	CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging. Optica, 2020, 7, 802.	4.8	57
12	Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules, 2020, 10, 661.	1.8	63
13	System-wide analyses of the fission yeast poly(A) ⁺ RNA interactome reveal insights into organization and function of RNA–protein complexes. Genome Research, 2020, 30, 1012-1026.	2.4	6
14	Comparative Poly(A)+ RNA Interactome Capture of RNA Surveillance Mutants. Methods in Molecular Biology, 2020, 2062, 255-276.	0.4	6
15	HIV Rev-isited. Open Biology, 2020, 10, 200320.	1.5	20
16	System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular Cell, 2019, 74, 196-211.e11.	4.5	137
17	The Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy. Cell, 2019, 176, 1054-1067.e12.	13.5	125
18	A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nature Communications, 2018, 9, 831.	5.8	86

ALFREDO CASTELLO

#	Article	IF	CITATIONS
19	A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19, 327-341.	16.1	1,172
20	Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer. Current Opinion in Genetics and Development, 2018, 48, 112-120.	1.5	58
21	Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Research, 2018, 46, 12067-12086.	6.5	20
22	Unconventional RNAâ€binding proteins step into the virus–host battlefront. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1498.	3.2	65
23	Specific RNP capture with antisense LNA/DNA mixmers. Rna, 2017, 23, 1290-1302.	1.6	41
24	Plant RNA Interactome Capture: Revealing the Plant RBPome. Trends in Plant Science, 2017, 22, 449-451.	4.3	12
25	Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap. Nature Protocols, 2017, 12, 2447-2464.	5.5	32
26	Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. Journal of Virology, 2017, 91, .	1.5	29
27	hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing. Molecular Cell, 2017, 68, 955-969.e10.	4.5	255
28	RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biology, 2017, 15, 105.	1.7	125
29	Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nature Communications, 2016, 7, 12128.	5.8	134
30	The new (dis)order in RNA regulation. Cell Communication and Signaling, 2016, 14, 9.	2.7	168
31	The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease. Cell Reports, 2016, 16, 1456-1469.	2.9	128
32	Comprehensive Identification of RNA-Binding Domains in Human Cells. Molecular Cell, 2016, 63, 696-710.	4.5	493
33	Identification of RNA-binding Proteins in Macrophages by Interactome Capture. Molecular and Cellular Proteomics, 2016, 15, 2699-2714.	2.5	88
34	The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Archiv European Journal of Physiology, 2016, 468, 1029-1040.	1.3	80
35	Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture. Methods in Molecular Biology, 2016, 1358, 131-139.	0.4	53
36	The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 2015, 6, 10127.	5.8	385

ALFREDO CASTELLO

#	Article	IF	CITATIONS
37	Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins. Trends in Endocrinology and Metabolism, 2015, 26, 746-757.	3.1	219
38	A versatile assay for RNA-binding proteins in living cells. Rna, 2014, 20, 721-731.	1.6	33
39	The RNA-binding protein repertoire of embryonic stem cells. Nature Structural and Molecular Biology, 2013, 20, 1122-1130.	3.6	415
40	System-wide identification of RNA-binding proteins by interactome capture. Nature Protocols, 2013, 8, 491-500.	5.5	176
41	African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus Research, 2013, 173, 58-75.	1.1	62
42	RNA-binding proteins in Mendelian disease. Trends in Genetics, 2013, 29, 318-327.	2.9	211
43	Poliovirus 2A Protease Triggers a Selective Nucleo-Cytoplasmic Redistribution of Splicing Factors to Regulate Alternative Pre-mRNA Splicing. PLoS ONE, 2013, 8, e73723.	1.1	34
44	A non-infectious cell-based phenotypic assay for the assessment of HIV-1 susceptibility to protease inhibitors. Journal of Antimicrobial Chemotherapy, 2012, 67, 32-38.	1.3	7
45	Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell, 2012, 149, 1393-1406.	13.5	1,765
46	GCN2 Has Inhibitory Effect on Human Immunodeficiency Virus-1 Protein Synthesis and Is Cleaved upon Viral Infection. PLoS ONE, 2012, 7, e47272.	1.1	36
47	Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease. Biochemical and Biophysical Research Communications, 2011, 414, 142-147.	1.0	10
48	Functional impairment of elF4A and elF4G factors correlates with inhibition of influenza virus mRNA translation. Virology, 2011, 413, 93-102.	1.1	24
49	The Multifaceted Poliovirus 2A Protease: Regulation of Gene Expression by Picornavirus Proteases. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-23.	3.0	66
50	Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 2009, 4, e4772.	1.1	44
51	HIV- 1 Protease Inhibits Cap- and Poly(A)-Dependent Translation upon eIF4GI and PABP Cleavage. PLoS ONE, 2009, 4, e7997.	1.1	59
52	Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 2009, 5, e1000562.	2.1	69
53	RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. Journal of Cell Science, 2009, 122, 3799-3809.	1.2	83
54	Translation of mRNAs from Vesicular Stomatitis Virus and Vaccinia Virus Is Differentially Blocked in Cells with Depletion of eIF4GI and/or eIF4GII. Journal of Molecular Biology, 2009, 394, 506-521.	2.0	24

ALFREDO CASTELLO

#	Article	IF	CITATIONS
55	Viral Translation Is Coupled to Transcription in Sindbis Virus-Infected Cells. Journal of Virology, 2007, 81, 7061-7068.	1.5	36
56	Viroporins from RNA viruses induce caspase-dependent apoptosis. Cellular Microbiology, 2007, 10, 071027034427002-???.	1.1	91
57	Differential inhibition of cellular and Sindbis virus translation by brefeldin A. Virology, 2007, 363, 430-436.	1.1	10
58	Translation of Sindbis Virus 26S mRNA Does Not Require Intact Eukariotic Initiation Factor 4G. Journal of Molecular Biology, 2006, 355, 942-956.	2.0	45
59	HIV protease cleaves poly(A)-binding protein. Biochemical Journal, 2006, 396, 219-226.	1.7	85
60	Differential Cleavage of elF4GI and elF4GII in Mammalian Cells. Journal of Biological Chemistry, 2006, 281, 33206-33216.	1.6	38