
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3113082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid - Characterization and Biodegradability Assessment. Macromolecular Bioscience, 2005, 5, 352-361.	4.1	154

2 Study on the Crystallization, Miscibility, Morphology, Properties of Poly(lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,702 Td (acid)/Poly(

3	Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 2015, 121, 51-59.	5.8	90
4	Compatible and crystallization properties of poly(lactic acid)/poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	0 622 Td (2.6	(adipateâ€≺i 84
5	Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polymer Degradation and Stability, 2017, 140, 55-63.	5.8	84
6	Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 2019, 160, 265-271.	3.8	61
7	Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. Journal of Polymer Research, 2019, 26, 1.	2.4	53
8	Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites. Materials Science and Engineering C, 2016, 69, 27-36.	7.3	51
9	Preparation, characterization, and biodegradability of renewable resourceâ€based composites from recycled polylactide bioplastic and sisal fibers. Journal of Applied Polymer Science, 2012, 123, 347-355.	2.6	49
10	Preparation and characterization of biodegradable polycaprolactone/multiwalled carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2009, 112, 660-668.	2.6	48
11	Assessing biodegradability and mechanical, thermal, and morphological properties of an acrylic acid-modified poly(3-hydroxybutyric acid)/wood flours biocomposite. Journal of Applied Polymer Science, 2006, 102, 3565-3574.	2.6	44
12	Preparation and Characterization of Polyhydroxyalkanoate Bioplastic-Based Green Renewable Composites from Rice Husk. Journal of Polymers and the Environment, 2014, 22, 384-392.	5.0	40
13	New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. Journal of Applied Polymer Science, 2008, 108, 2280-2289.	2.6	39
14	Synthesis and characterization of polyethylene-octene elastomer/clay/biodegradable starch nanocomposites. Journal of Applied Polymer Science, 2005, 97, 397-404.	2.6	38
15	Antibacterial activity and in vitro evaluation of the biocompatibility of chitosan-based polysaccharide/polyester membranes. Carbohydrate Polymers, 2015, 134, 438-447.	10.2	35
16	Characterizing Biodegradation of PLA and PLAâ€ <i>g</i> â€AA/Starch Films Using a Phosphateâ€Solubilizing <i>Bacillus</i> Species. Macromolecular Bioscience, 2008, 8, 560-567.	4.1	32
17	Controlled release evaluation of bacterial fertilizer using polymer composites as matrix. Journal of Controlled Release, 2008, 132, 42-48.	9.9	32
18	Study on the Crystallization Kinetic and Characterization of Poly(lactic acid) and Poly(vinyl alcohol) Blends. Polymer-Plastics Technology and Engineering, 2008, 47, 1289-1296.	1.9	32

#	Article	IF	CITATIONS
19	Synthesis and characterization of poly(trimethylene terephthalate) nanocomposites incorporating multiâ€walled carbon nanotubes. Journal of Applied Polymer Science, 2009, 114, 1633-1642.	2.6	32
20	Mechanical properties, biocompatibility, and biodegradation of cross-linked cellulose acetate-reinforced polyester composites. Carbohydrate Polymers, 2014, 105, 41-48.	10.2	28
21	Antibacterial Properties of Biobased Polyester Composites Achieved through Modification with a Thermally Treated Waste Scallop Shell. ACS Applied Bio Materials, 2019, 2, 2262-2270.	4.6	27
22	Bio-Based Electrospun Nanofiber of Polyhydroxyalkanoate Modified with Black Soldier Fly's Pupa Shell with Antibacterial and Cytocompatibility Properties. ACS Applied Materials & Interfaces, 2018, 10, 42127-42135.	8.0	26
23	Modification of biodegradable polylactide by silica and wood flour through a sol–gel process. Journal of Applied Polymer Science, 2008, 109, 2128-2138.	2.6	24
24	Study on the Preparation and Characterization of Biodegradable Polylactide/SiO ₂ –TiO ₂ Hybrids. Polymer-Plastics Technology and Engineering, 2008, 47, 887-894.	1.9	24
25	Preparation and characterizations of polycaprolactone/green coconut fiber composites. Journal of Applied Polymer Science, 2010, 115, 948-956.	2.6	24
26	The Processing and Characterization of Polyester/Natural Fiber Composites. Polymer-Plastics Technology and Engineering, 2010, 49, 1022-1029.	1.9	24
27	Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility. Materials Science and Engineering C, 2017, 70, 54-61.	7.3	24
28	Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterisation and assessment of mechanical and thermal properties. Polymer Bulletin, 2013, 70, 3443-3462.	3.3	23
29	Preparation and Characterization of Polylactic Acid/Bamboo Fiber Composites. ACS Applied Bio Materials, 2022, 5, 1038-1046.	4.6	23
30	Process, Characterization and Biodegradability of Aliphatic Aromatic Polyester/Sisal Fiber Composites. Journal of Polymers and the Environment, 2011, 19, 706-713.	5.0	20
31	Polyester/natural fiber biocomposites: preparation, characterization, and biodegradability. Polymer Bulletin, 2011, 67, 1605-1619.	3.3	20
32	Aliphatic–aromatic polyester–polyaniline composites: preparation, characterization, antibacterial activity and conducting properties. Polymer International, 2012, 61, 1556-1563.	3.1	20
33	The compatible and mechanical properties of biodegradable poly(Lactic Acid)/ethylene glycidyl methacrylate copolymer blends. Journal of Polymer Research, 2012, 19, 1.	2.4	20
34	Polylactide-based renewable composites from natural products residues by encapsulated film bag: Characterization and biodegradability. Carbohydrate Polymers, 2012, 90, 583-591.	10.2	19
35	Polyester/cellulose acetate composites: Preparation, characterization and biocompatible. Journal of Applied Polymer Science, 2012, 126, E242.	2.6	19
36	Bio-based polymer nanofiber with siliceous sponge spicules prepared by electrospinning: Preparation, characterisation, and functionalisation. Materials Science and Engineering C, 2020, 108, 110506.	7.3	18

#	Article	IF	CITATIONS
37	Thermal properties and characterization of surface-treated RSF-reinforced polylactide composites. Polymer Bulletin, 2013, 70, 3221-3239.	3.3	17
38	Influence of modified polyester on the material properties of collagen-based biocomposites and in vitro evaluation of cytocompatibility. Materials Science and Engineering C, 2015, 48, 310-319.	7.3	17
39	Polyester-based green composites for three-dimensional printing strips: preparation, characterization and antibacterial properties. Polymer Bulletin, 2017, 74, 2277-2295.	3.3	17
40	Comparative assessment of the interface between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fish scales in composites: Preparation, characterization, and applications. Materials Science and Engineering C, 2019, 104, 109878.	7.3	17
41	Preparation of Poly(ethylene-octene) Elastomer/Clay/Wood Flour Nanocomposites by a Melting Method. Macromolecular Materials and Engineering, 2005, 290, 695-703.	3.6	16
42	Antibacterial activity and antistatic composites of polyester/Ag‣iO ₂ prepared by a sol–gel method. Journal of Applied Polymer Science, 2011, 121, 2193-2201.	2.6	16
43	Antibacterial properties and cytocompatibility of biobased nanofibers of fish scale gelatine, modified polylactide, and freshwater clam shell. International Journal of Biological Macromolecules, 2020, 165, 1219-1228.	7.5	16
44	Characterizing composite of multiwalled carbon nanotubes and POE-g-AA prepared via melting method. Journal of Applied Polymer Science, 2007, 104, 1328-1337.	2.6	15
45	Polyester biocomposites from recycled natural fibers: Characterization and biodegradability. Journal of Applied Polymer Science, 2011, 119, 1211-1219.	2.6	15
46	Characterization and biocompatibility of chestnut shell fiber–based composites with polyester. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
47	Poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposites: preparation and characterizations. Designed Monomers and Polymers, 2013, 16, 99-107.	1.6	14
48	Performance of an acrylic-acid-grafted poly(3-hydroxybutyric acid)/starch bio-blend: characterization and physical properties. Designed Monomers and Polymers, 2007, 10, 1-18.	1.6	13
49	Compatible and tearing properties of poly(lactic acid)/poly(ethylene glutaricâ€ <i>co</i> â€ŧerephthalate) copolyester blends. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 913-920.	2.1	13
50	Performance and biodegradability of a maleated polyester bioplastic/recycled sugarcane bagasse system. Journal of Applied Polymer Science, 2011, 121, 427-435.	2.6	13
51	Characterization and antistatic behavior of SiO2-functionalized multiwalled carbon nanotube/poly(trimethylene terephthalate) composites. Journal of Polymer Research, 2013, 20, 1.	2.4	13
52	Characterization, functionality and application of siliceous sponge spicules additive-based manufacturing biopolymer composites. Additive Manufacturing, 2018, 22, 13-20.	3.0	13
53	Barrier Properties and Hydrophobicity of Biodegradable Poly(lactic acid) Composites Reinforced with Recycled Chinese Spirits Distiller's Grains. Polymers, 2021, 13, 2861.	4.5	13
54	Preparation and characterization of functionalized graphite/poly(butylene terephthalate) composites. Polymer Bulletin, 2015, 72, 1799-1816.	3.3	12

#	Article	IF	CITATIONS
55	Biodegradable Composite Nanofiber Containing Fish-Scale Extracts. ACS Applied Bio Materials, 2021, 4, 462-469.	4.6	12
56	Novel composite 3D-printed filament made from fish scale-derived hydroxyapatite, eggshell and polylactic acid via a fused fabrication approach. Additive Manufacturing, 2021, 46, 102169.	3.0	12
57	Polyester and multiwalled carbon nanotube composites: characterization, electrical conductivity and antibacterial activity. Polymer International, 2011, 60, 807-815.	3.1	11
58	Enhanced antibacterial activity, antioxidant, and <i>in vitro </i> biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 872-880.	3.4	11
59	Modulation of the interface between polyester and spent coffee grounds in polysaccharide membranes: Preparation, cell proliferation, antioxidant activity and tyrosinase activity. Materials Science and Engineering C, 2017, 78, 530-538.	7.3	11
60	Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites. Polymer Bulletin, 2021, 78, 4817-4834.	3.3	10
61	Biocompatibility and characterization of renewable agricultural residues and polyester composites. Carbohydrate Polymers, 2013, 94, 584-593.	10.2	9
62	Preparation, Characterisation, and Controlled-Release of Biodegradable Polyester and Marine-Algae Composite. Journal of Polymers and the Environment, 2015, 23, 356-366.	5.0	9
63	Improvement of the biocompatibility of polyhydroxyalkanoate by filling with hyaluronic acid. Journal of Materials Science, 2015, 50, 7790-7799.	3.7	9
64	Promoting Fertilizer Use via Controlled Release of a Bacteria-Encapsulated Film Bag. Journal of Agricultural and Food Chemistry, 2010, 58, 6300-6305.	5.2	8
65	Characterization and antibacterial activity of chitosanâ€based composites with polyester. Polymers for Advanced Technologies, 2012, 23, 463-469.	3.2	8
66	Aliphatic Polyester-Based Green Renewable Eco-composites from Agricultural Residues: Characterization and Assessment of Mechanical Properties. Journal of Polymers and the Environment, 2013, 21, 421-430.	5.0	8
67	Textile Fabrics Containing Recycled Poly(ethylene terephthalate), Oyster Shells, and Silica Aerogels with Superior Heat Insulation, Water Resistance, and Antibacterial Properties. ACS Applied Polymer Materials, 2021, 3, 3175-3184.	4.4	8
68	Biodegradable Blends Prepared from Polycaprolactone and Poly(glutamic acid): Structure, Thermal Properties, and Biodegradability. Polymer-Plastics Technology and Engineering, 2010, 49, 1361-1370.	1.9	7
69	Characterization and biodegradability of agricultural residue-filled polyester ecocomposites. Polymer Bulletin, 2013, 70, 1613-1629.	3.3	7
70	Characterizing polycaprolactone/SiO2–TiO2 nanocomposites synthesized via in situ sol–gel polymerization. Designed Monomers and Polymers, 2007, 10, 311-326.	1.6	6
71	Recycledâ€disposableâ€chopstickâ€fiberâ€reinforced polypropylene green composites. Journal of Applied Polymer Science, 2012, 123, 3046-3053.	2.6	6
72	Characterization and Biodegradation Evaluation of Biocapsules Composed of Polyester/Natural Product Composites. Polymer-Plastics Technology and Engineering, 2016, 55, 391-402.	1.9	5

#	Article	IF	CITATIONS
73	Preparation, characterization, and performance of bio-based polyester composites derived from renewable distillers grains and shellfish. Journal of Polymer Research, 2021, 28, 1.	2.4	5
74	Preparation and characterization of a polycaprolactone/C ₆₀ composite and its improved counterpart (PCLNH ₂ /C ₆₀ OH). Journal of Applied Polymer Science, 2010, 115, 3489-3499.	2.6	4
75	Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(Îμ-caprolactone), and wood flour. Journal of Polymer Engineering, 2012, 32, 435-444.	1.4	4
76	The Properties and a New Preparation of Ethylene Propylene Diene Monomer/Montmorillonite Nanocomposites. Polymers and Polymer Composites, 2015, 23, 181-190.	1.9	3
77	Preparation and characterisation of poly(hydroxyalkanoate)/Ganoderma lucidum fibre composites: mechanical and biological properties. Polymer Bulletin, 2015, 72, 821-837.	3.3	3
78	Fabrication, characterization, cytocompatibility, and biological activity of lemon fiber-filled polyester composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 151-160.	3.4	3
79	Modulation of polylactic acid nanofiber containing corn stalk waste via electrospinning: fabrication, characterization, and cytocompatibility. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1236-1247.	3.4	3
80	Interface design, cytocompatibility, and biological activity of astaxanthin/polyester composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 564-571.	3.4	2
81	Assessing feasibility of promoting fertilizer utilization facilitated by controlled release of bacteria-encapsulated film bag. Designed Monomers and Polymers, 2013, 16, 303-312.	1.6	1
82	Characterization and functionality of nanocomposite mats containing polyester, seashell, and silica aerogel using an electrospinning fabrication approach. Polymer Bulletin, 0, , 1.	3.3	1