Ningning Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3113001/publications.pdf

Version: 2024-02-01

		394421	414414
32	1,108	19	32
papers	citations	h-index	g-index
32	32	32	935
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Strategies for Improving Tensile Ductility of Bulk Nanostructured Materials. Advanced Engineering Materials, 2010, 12, 769-778.	3.5	156
2	Grain size effect on tensile properties and slip systems of pure magnesium. Acta Materialia, 2021, 206, 116604.	7.9	127
3	Defects in Silicene: Vacancy Clusters, Extended Line Defects and Di-adatoms. Scientific Reports, 2015, 5, 7881.	3.3	92
4	Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling. Science Advances, 2020, 6, .	10.3	75
5	Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire. Communications Materials, 2021, 2, .	6.9	51
6	Strength and Ductility of Biâ€Modal Cu. Advanced Engineering Materials, 2011, 13, 865-871.	3.5	49
7	Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity. ACS Applied Materials & Interfaces, 2018, 10, 8197-8204.	8.0	48
8	Achieving ultra-strong Magnesium–lithium alloys by low-strain rotary swaging. Materials Research Letters, 2021, 9, 255-262.	8.7	48
9	Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties. Materials, 2016, 9, 951.	2.9	44
10	Breaking Material Property Trade-offs via Macrodesign of Microstructure. Nano Letters, 2021, 21, 3191-3197.	9.1	41
11	Enhancement of the Mechanical Properties of an Mg–Zn–Ca Alloy Using Highâ€Pressure Torsion. Advanced Engineering Materials, 2015, 17, 1738-1741.	3.5	39
12	A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening. Journal of Materials Science and Technology, 2021, 89, 88-96.	10.7	35
13	Enhancing strength and electrical conductivity of Cu–Cr composite wire by two-stage rotary swaging and aging treatments. Composites Part B: Engineering, 2022, 231, 109567.	12.0	35
14	Influence of microstructure on thermal stability of ultrafine-grained Cu processed by equal channel angular pressing. Journal of Materials Science, 2018, 53, 13173-13185.	3.7	30
15	Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures. Journal of Materials Research, 2017, 32, 4443-4451.	2.6	27
16	Mechanical Properties and Deformation Mechanisms of Heterostructured High-Entropy and Medium-Entropy Alloys: A Review. Frontiers in Materials, 2022, 8, .	2.4	25
17	Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB) Process. Materials, 2017, 10, 109.	2.9	23
18	U-R relationship prediction method for aluminum alloy circular tube free-bending process based on sensitivity analysis of material parameters. International Journal of Advanced Manufacturing Technology, 2018, 99, 1967-1977.	3.0	23

#	Article	IF	CITATIONS
19	On the Heterogeneity of Local Shear Strain Induced by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900477.	3.5	20
20	Grain Refinement Mechanisms in Gradient Nanostructured AZ31B Mg Alloy Prepared via Rotary Swaging. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4053-4065.	2.2	18
21	Effect of grain structure on Charpy impact behavior of copper. Scientific Reports, 2017, 7, 44783.	3.3	16
22	Mechanical Properties and Microstructures of Commercialâ€Purity Aluminum Processed by Rotational Accelerated Shot Peening Plus Cold Rolling. Advanced Engineering Materials, 2020, 22, 1900478.	3.5	14
23	Annealing behaviour of ultrafine-grained aluminium. Philosophical Magazine, 2014, 94, 476-491.	1.6	13
24	Nano-Gradient Materials Prepared by Rotary Swaging. Nanomaterials, 2021, 11, 2223.	4.1	12
25	Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy. Journal of Materials Research, 2019, 34, 2398-2405.	2.6	11
26	Unveiling microstructural origins of the balanced strength–ductility combination in eutectic high-entropy alloys at cryogenic temperatures. Materials Research Letters, 2022, 10, 602-610.	8.7	10
27	Effective Surface Nano-Crystallization of Ni2FeCoMo0.5V0.2 Medium Entropy Alloy by Rotationally Accelerated Shot Peening (RASP). Entropy, 2020, 22, 1074.	2.2	9
28	Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique. Nanotechnology Reviews, 2021, 10, 73-86.	5.8	6
29	Revealing grain coarsening and detwinning in bimodal Cu under tension. Reviews on Advanced Materials Science, 2021, 60, 15-24.	3.3	5
30	Plasticity and Deformation Mechanisms of Ultrafine-Grained Ti in Necking Region Revealed by Digital Image Correlation Technique. Nanomaterials, 2021, 11, 574.	4.1	3
31	Modeling the deformation behavior of nanocrystalline alloy with hierarchical microstructures. Journal of Nanoparticle Research, 2016, $18,1.$	1.9	2
32	Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction. Beilstein Journal of Nanotechnology, 2016, 7, 1501-1506.	2.8	1