M Manuela R Da Fonseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 2011, 22, 231-241.	3.0	615
2	Carvone: Why and how should one bother to produce this terpene. Food Chemistry, 2006, 95, 413-422.	8.2	323
3	Biotransformation of terpenes. Biotechnology Advances, 2006, 24, 134-142.	11.7	211
4	Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 2014, 31, 104-113.	4.4	179
5	Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresource Technology, 2012, 111, 391-397.	9.6	152
6	Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnology Advances, 2018, 36, 798-817.	11.7	128
7	The remarkable Rhodococcus erythropolis. Applied Microbiology and Biotechnology, 2005, 67, 715-726.	3.6	122
8	Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 699-711.	1.8	74
9	Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiology Ecology, 2005, 51, 389-399.	2.7	66
10	Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology and Biotechnology, 2005, 67, 383-388.	3.6	63
11	Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. International Journal of Biological Macromolecules, 2014, 71, 59-67.	7.5	57
12	Mycobacterium sp.,Rhodococcus erythropolis, andPseudomonas putida behavior in the presence of organic solvents. Microscopy Research and Technique, 2004, 64, 215-222.	2.2	55
13	Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate. Biochemical Engineering Journal, 2010, 48, 246-252.	3.6	53
14	Operational stability ofThermomyces lanuginosa lipase during interesterification of fat in continuous packed-bed reactors. European Journal of Lipid Science and Technology, 2006, 108, 545-553.	1.5	48
15	Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams: A kinetic study. Biochemical Engineering Journal, 2009, 43, 327-332.	3.6	47
16	Response surface modelling of the production of ω-3 polyunsaturated fatty acids-enriched fats by a commercial immobilized lipase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 677-686.	1.8	46
17	Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Applied Microbiology and Biotechnology, 2007, 76, 1423-1430.	3.6	46
18	A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures. New Biotechnology, 2017, 34, 12-22.	4.4	46

#	Article	IF	CITATIONS
19	Maintenance of cell viability in the biotransformation of (â^')-carveol with whole cells of Rhodococcus erythropolis. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 389-398.	1.8	40
20	Lipase-catalysed interesterification of palm stearin with soybean oil in a continuous fluidised-bed reactor. European Journal of Lipid Science and Technology, 2005, 107, 455-463.	1.5	38
21	Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Applied Microbiology and Biotechnology, 2005, 69, 268-275.	3.6	37
22	Efficient P(3HB) extraction from Burkholderia sacchari cells using non-chlorinated solvents. Biochemical Engineering Journal, 2015, 103, 39-46.	3.6	37
23	Modelling the production of ethyl butyrate catalysed by Candida rugosa lipase immobilised in polyurethane foams. Biochemical Engineering Journal, 2007, 33, 148-158.	3.6	36
24	Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiology Ecology, 2007, 61, 406-413.	2.7	33
25	Behaviour of Mycobacterium sp. NRRL B-3805 whole cells in aqueous, organic-aqueous and organic media studied by fluorescence microscopy. Applied Microbiology and Biotechnology, 2004, 64, 695-701.	3.6	32
26	Assessment of three-dimensional biofilm structure using an optical microscope. BioTechniques, 2007, 42, 616-620.	1.8	30
27	Development of a reaction system for the selective conversion of (â^')-trans-carveol to (â^')-carvone with whole cells of Rhodococcus erythropolis DCL14. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 719-724.	1.8	29
28	Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. Journal of Biotechnology, 2004, 109, 147-158.	3.8	29
29	Lipase/acyltransferase-catalysed interesterification of fat blends containing n-3 polyunsaturated fatty acids. European Journal of Lipid Science and Technology, 2009, 111, 120-134.	1.5	29
30	Polyhydroxyalkanoates: Waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. International Journal of Biological Macromolecules, 2014, 71, 131-140.	7.5	29
31	Production and Recovery of Limonene-1,2-Diol and Simultaneous Resolution of a Diastereomeric Mixture of Limonene-1,2-Epoxide with whole Cells ofRhodococcus ErythropolisDCL14. Biocatalysis and Biotransformation, 2000, 18, 223-235.	2.0	28
32	Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Applied Microbiology and Biotechnology, 2003, 61, 69-76.	3.6	28
33	Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 377-387.	1.8	27
34	Response surface modeling of glycerolysis catalyzed by Candida rugosa lipase immobilized in different polyurethane foams for the production of partial glycerides. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 71-80.	1.8	27
35	Solvent toxicity in organic-aqueous systems analysed by multivariate analysis. Bioprocess and Biosystems Engineering, 2004, 26, 361-375.	3.4	26
36	Antibacterial properties of the extract of Abelmoschus esculentus. Biotechnology and Bioprocess Engineering, 2011, 16, 971-977.	2.6	26

#	Article	IF	CITATIONS
37	Macroalgae as Protein Sources—A Review on Protein Bioactivity, Extraction, Purification and Characterization. Applied Sciences (Switzerland), 2021, 11, 7969.	2.5	26
38	Towards the bio-production of trans-carveol and carvone from limonene: induction after cell growth on limonene and toluene. Tetrahedron: Asymmetry, 2003, 14, 3925-3931.	1.8	25
39	Principal Components Analysis as a Tool to Summarise Biotransformation Data: Influence on Cells of Solvent Type and Phase Ratio. Biocatalysis and Biotransformation, 2003, 21, 305-314.	2.0	24
40	Operational stability of immobilised lipase/acyltransferase during interesterification of fat blends. European Journal of Lipid Science and Technology, 2009, 111, 358-367.	1.5	24
41	Modelling lipase-catalysed transesterification of fats containingn-3 fatty acids monitored by their solid fat content. European Journal of Lipid Science and Technology, 2004, 106, 599-612.	1.5	22
42	Xylonic acid production from xylose by Paraburkholderia sacchari. Biochemical Engineering Journal, 2021, 170, 107982.	3.6	22
43	Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari. International Journal of Biological Macromolecules, 2017, 105, 825-833.	7.5	19
44	Callus and suspension culture ofSilybum marianum. Biosynthesis of proteins with clotting activity. Biotechnology Letters, 1986, 8, 19-24.	2.2	18
45	Interesterification of fat blends rich in ω-3 polyunsaturated fatty acids catalysed by immobilized Thermomyces lanuginosa lipase under high pressure. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 58-66.	1.8	17
46	Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. Journal of Biotechnology, 2013, 164, 309-317.	3.8	16
47	Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. Journal of Biotechnology, 2004, 109, 159-167.	3.8	15
48	Principal component analysis applied to bacterial cell behaviour in the presence of organic solvents. Biocatalysis and Biotransformation, 2004, 22, 203-214.	2.0	14
49	Kinetics of L-tryptophan production from indole and L-serine catalyzed by whole cells with tryptophanase activity. Journal of Bioscience and Bioengineering, 2004, 97, 289-293.	2.2	14
50	Partitioning of water in organic systems with lipase immobilized in polyurethane foams. Biochemical Engineering Journal, 2005, 26, 29-37.	3.6	14
51	The Effect of Substrate Hydrophobicity on the Kinetic Behaviour of ImmobilizedCandida rugosaLipase. Biocatalysis and Biotransformation, 1995, 13, 99-110.	2.0	13
52	A simple method to observe organic solvent drops with a standard optical microscope. Microscopy Research and Technique, 2003, 60, 465-466.	2.2	13
53	Characterization and Production of a Polyhydroxyalkanoate from Cassava Peel Waste: Manufacture of Biopolymer Microfibers by Electrospinning. Journal of Polymers and the Environment, 2021, 29, 187-200.	5.0	13
54	Solvent selection for the biotransformation of terpenes by Pseudomonas putida. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 295-299.	1.8	11

#	Article	IF	CITATIONS
55	Modelling the microenvironment of a lipase immobilized in polyurethane foams. Biocatalysis and Biotransformation, 2005, 23, 363-373.	2.0	11
56	Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste. Bioresources and Bioprocessing, 2021, 8, .	4.2	11
57	Adsorption studies for the separation ofl-tryptophan froml-serine and indole in a bioconversion medium. Bioprocess and Biosystems Engineering, 1995, 12, 95-102.	0.5	10
58	Novel calibration method for mass spectrometers for on-line gas analysis. Set-up for the monitoring of a bacterial fermentation. Bioprocess and Biosystems Engineering, 1998, 19, 289.	0.5	10
59	Diffusion in cell-free and cell immobilising ?-carrageenan gel beads with and without chemical reaction. , 1999, 63, 625-631.		10
60	Calibration of near infrared spectroscopy for solid fat content of fat blends analysis using nuclear magnetic resonance data. Analytica Chimica Acta, 2005, 544, 213-218.	5.4	10
61	Upgrading the organic fraction of municipal solid waste to poly(3-hydroxybutyrate). Bioresource Technology, 2019, 290, 121785.	9.6	10
62	Solubility of Propene in Water and in a Mineral Medium for the Cultivation of a XanthobacterStrain. Journal of Solution Chemistry, 1998, 27, 455-461.	1.2	9
63	Modelling the biokinetic resolution of diastereomers present in unequal initial amounts. Tetrahedron: Asymmetry, 2002, 13, 1637-1643.	1.8	9
64	A microporous membrane interface for the monitoring of dissolved gaseous and volatile compounds by on-line mass spectrometry. Journal of Membrane Science, 2002, 208, 49-56.	8.2	9
65	A simple imaging method for biomass determination. Journal of Microbiological Methods, 2005, 60, 135-140.	1.6	8
66	On the heterogeneous composition of bacterial polyhydroxyalkanoate terpolymers. Bioresource Technology, 2013, 147, 434-441.	9.6	8
67	Degradation of hydrocarbons and alcohols by <i>Rhodococcus erythropolis</i> DCL14: A comparison in scale performance. Biocatalysis and Biotransformation, 2007, 25, 144-150.	2.0	7
68	Pattern recognition of lipaseâ€catalyzed or chemically interesterified fat blends containing <i>n</i> â€3 polyunsaturated fatty acids. European Journal of Lipid Science and Technology, 2008, 110, 893-904.	1.5	7
69	Model for the production of L-tryptophan from L-serine and indole by immobilized cells in a three-phase liquid-impelled loop reactor. Bioprocess and Biosystems Engineering, 1996, 14, 151-158.	0.5	5
70	Giving credit to residual bioresources: From municipal solid waste hydrolysate and waste plum juice to poly (3-hydroxybutyrate). Waste Management, 2020, 118, 534-540.	7.4	5
71	Batch cultivation of Xanthobacter Py2 on 1-pentene. Biotechnology Letters, 1994, 16, 989-994.	2.2	4
72	The effect of solid medium composition on growth and sporulation ofStreptomyces clavuligerus; spore viability during storage at +4°C. Biotechnology Letters, 1995, 9, 361-364.	0.5	4

#	Article	IF	CITATIONS
73	Performance of a Liquid-Impelled Loop Reactor with Immobilized Cells. Progress in Biotechnology, 1996, , 511-517.	0.2	1
74	Recovery of the activity of an immobilized lipase after its use in fat transesterification. Progress in Biotechnology, 1998, 15, 435-440.	0.2	1
75	Degradation of toluene and xylene by Rhodococcus cells. Journal of Biotechnology, 2007, 131, S101.	3.8	0
76	Production of biopolyhydroxyalkanoates. , 2011, , .		0
77	Upgrading wheat straw to HOMO and co-polyhydroxyalkanoates. , 2015, , .		0
78	Production of monoglycerides by glycerolysis of olive oil with immobilized lipases: effect of the water activity. Bioprocess and Biosystems Engineering, 1995, 12, 327.	0.5	0