
Daniel P Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112940/publications.pdf Version: 2024-02-01

DANIEL P.WOODS

#	Article	IF	CITATIONS
1	Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nature Communications, 2017, 8, 2184.	5.8	269
2	Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. Plant Physiology, 2017, 173, 27-35.	2.3	127
3	Interaction of Photoperiod and Vernalization Determines Flowering Time of <i>Brachypodium distachyon</i> Â Â Â Â. Plant Physiology, 2014, 164, 694-709.	2.3	109
4	Evolution of <i>VRN2/Ghd7-</i> Like Genes in Vernalization-Mediated Repression of Grass Flowering. Plant Physiology, 2016, 170, 2124-2135.	2.3	82
5	PHYTOCHROME C Is an Essential Light Receptor for Photoperiodic Flowering in the Temperate Grass, <i>Brachypodium distachyon</i> . Genetics, 2014, 198, 397-408.	1.2	70
6	WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genetics, 2022, 18, e1009747.	1.5	50
7	Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genetics, 2020, 16, e1008812.	1.5	46
8	Establishment of a vernalization requirement in <i>Brachypodium distachyon</i> requires <i>REPRESSOR OF VERNALIZATION1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6623-6628.	3.3	41
9	Genetic Architecture of Flowering-Time Variation in <i>Brachypodium distachyon</i> . Plant Physiology, 2017, 173, 269-279.	2.3	40
10	A florigen paralog is required for short-day vernalization in a pooid grass. ELife, 2019, 8, .	2.8	28
11	Phylogenomic Analyses of the BARREN STALK1/LAX PANICLE1 (BA1/LAX1) Genes and Evidence for Their Roles During Axillary Meristem Development. Molecular Biology and Evolution, 2011, 28, 2147-2159.	3.5	27
12	Memory of the vernalized state in plants including the model grass Brachypodium distachyon. Frontiers in Plant Science, 2014, 5, 99.	1.7	27
13	An ortholog of <i><scp>CURLY LEAF</scp>/<scp>ENHANCER OF ZESTE</scp> likeâ€1 </i> is required for proper flowering in <i>Brachypodium distachyon</i> . Plant Journal, 2018, 93, 871-882.	2.8	25
14	MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genetics, 2022, 18, e1010157.	1.5	16
15	EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. Frontiers in Plant Science, 2021, 12, 769194.	1.7	14
16	The wild grass Brachypodium distachyon as a developmental model system. Current Topics in Developmental Biology, 2022, 147, 33-71.	1.0	12
17	Mutations in the predicted DNA polymerase subunit POLD3 result in more rapid flowering of <i>Brachypodium distachyon</i> . New Phytologist, 2020, 227, 1725-1735.	3.5	6

18 Title is missing!. , 2020, 16, e1008812.

