
Yukio Kawamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112918/publications.pdf Version: 2024-02-01

VIIKIO KANMAMIIDA

#	Article	IF	CITATIONS
1	In Planta Monitoring of Cold-Responsive Promoter Activity Reveals a Distinctive Photoperiodic Response in Cold Acclimation. Plant and Cell Physiology, 2021, 62, 43-52.	1.5	5
2	Effects of the blue light–cryptochrome system on the early process of cold acclimation of Arabidopsis thaliana. Environmental and Experimental Botany, 2021, 183, 104340.	2.0	8
3	The <i>Brachypodium distachyon</i> cold-acclimated plasma membrane proteome is primed for stress resistance. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
4	Season specificity in the coldâ€induced calcium signal and the volatile chemicals in the atmosphere. Physiologia Plantarum, 2020, 168, 803-818.	2.6	2
5	Plasma membrane proteome analyses of Arabidopsis thaliana suspension-cultured cells during cold or ABA treatment: Relationship with freezing tolerance and growth phase. Journal of Proteomics, 2020, 211, 103528.	1.2	9
6	Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. International Journal of Molecular Sciences, 2020, 21, 8631.	1.8	19
7	A single seed treatment mediated through reactive oxygen species increases germination, growth performance, and abiotic stress tolerance in Arabidopsis and rice. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2597-2608.	0.6	2
8	Proteomic Approaches to Identify Cold-Regulated Plasma. Methods in Molecular Biology, 2020, 2156, 171-186.	0.4	2
9	Plasma Membrane Aquaporin Members PIPs Act in Concert to Regulate Cold Acclimation and Freezing Tolerance Responses in Arabidopsis thaliana. Plant and Cell Physiology, 2020, 61, 787-802.	1.5	26
10	Cold Sensing in Cold Acclimation Process: for Understanding the Season Sensing of Plants. Seibutsu Butsuri, 2020, 60, 098-101.	0.0	0
11	Shotgun Proteomics of Plant Plasma Membrane and Microdomain Proteins Using Nano-LC-MS/MS. Methods in Molecular Biology, 2020, 2139, 89-106.	0.4	1
12	Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. Journal of Proteomics, 2019, 197, 71-81.	1.2	45
13	Calcium Signaling-Linked <i>CBF/DREB1</i> Gene Expression was Induced Depending on the Temperature Fluctuation in the Field: Views from the Natural Condition of Cold Acclimation. Plant and Cell Physiology, 2019, 60, 303-317.	1.5	24
14	Plasma Membrane Proteomics of Arabidopsis Suspension-Cultured Cells Associated with Growth Phase Using Nano-LC-MS/MS. Methods in Molecular Biology, 2018, 1696, 185-194.	0.4	9
15	Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. Advances in Experimental Medicine and Biology, 2018, 1081, 61-79.	0.8	18
16	lsolation of Plasma Membrane and Plasma Membrane Microdomains. Methods in Molecular Biology, 2017, 1511, 199-212.	0.4	4
17	Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 2016, 67, 5203-5215.	2.4	48
18	Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH. Cryobiology, 2016, 73, 30-39.	0.3	4

YUKIO KAWAMURA

#	Article	IF	CITATIONS
19	A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera. Cryobiology, 2016, 73, 20-29.	0.3	32
20	Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology, 2016, 72, 123-134.	0.3	52
21	<scp>A</scp> rabidopsis dynaminâ€related protein 1 <scp>E</scp> in sphingolipidâ€enriched plasma membrane domains is associated with the development of freezing tolerance. Plant Journal, 2015, 83, 501-514.	2.8	20
22	Confocal cryomicroscopic analysis and cryodynamics of endoplasmic reticulum in herbaceous plant cells. Environmental and Experimental Botany, 2014, 106, 44-51.	2.0	2
23	Proteomic Approaches to Identify Cold-Regulated Plasma Membrane Proteins. Methods in Molecular Biology, 2014, 1166, 159-170.	0.4	12
24	Shotgun Proteomics of Plant Plasma Membrane and Microdomain Proteins Using Nano-LC-MS/MS. Methods in Molecular Biology, 2014, 1072, 481-498.	0.4	14
25	Cellular Auxin Homeostasis under High Temperature Is Regulated through a SORTING NEXIN1–Dependent Endosomal Trafficking Pathway. Plant Cell, 2013, 25, 3424-3433.	3.1	89
26	Changes of Detergent-Resistant Plasma Membrane Proteins in Oat and Rye during Cold Acclimation: Association with Differential Freezing Tolerance. Journal of Proteome Research, 2013, 12, 4998-5011.	1.8	43
27	<i>Allium fistulosum</i> as a novel system to investigate mechanisms of freezing resistance. Physiologia Plantarum, 2013, 147, 101-111.	2.6	23
28	Detergent-resistant plasma membrane proteome to elucidate microdomain functions in plant cells. Frontiers in Plant Science, 2013, 4, 27.	1.7	26
29	Plant plasma membrane proteomics for improving cold tolerance. Frontiers in Plant Science, 2013, 4, 90.	1.7	115
30	Influence of Pulse Width on Polyphenol Extraction from Agricultural Products by Pulsed Electric Field. IEEJ Transactions on Fundamentals and Materials, 2013, 133, 32-37.	0.2	9
31	Using Synchrotron FTIR and Confocal Cryomicroscopy to Explore Mechanisms of Cold Acclimation and Freezing Resistance Using a Single Cell Layer of Allium fistulosum L. , 2013, , 165-177.		2
32	Comparison of Plasma Membrane Proteomic Changes of Arabidopsis Suspension-Cultured Cells (T87) Tj ETQq0 0 Cell Physiology, 2012, 53, 543-554.	0 rgBT /C 1.5	verlock 10 T 58
33	Detergent-resistant Plasma Membrane Proteome in Oat and Rye: Similarities and Dissimilarities between Two Monocotyledonous Plants. Journal of Proteome Research, 2012, 11, 1654-1665.	1.8	40
34	Cold Stress-Induced Acclimation in Rice is Mediated by Root-Specific Aquaporins. Plant and Cell Physiology, 2012, 53, 1445-1456.	1.5	90
35	Arabidopsis Synaptotagmin SYT1, a Type I Signal-anchor Protein, Requires Tandem C2 Domains for Delivery to the Plasma Membrane. Journal of Biological Chemistry, 2010, 285, 23165-23176.	1.6	71
36	Extracellular freezing-induced mechanical stress and surface area regulation on the plasma membrane in cold-acclimated plant cells. Plant Signaling and Behavior, 2009, 4, 231-233.	1.2	22

ΥUKIO KAWAMURA

#	Article	IF	CITATIONS
37	Calcium-Dependent Freezing Tolerance in <i>Arabidopsis</i> Involves Membrane Resealing via Synaptotagmin SYT1. Plant Cell, 2009, 20, 3389-3404.	3.1	139
38	Alterations in Detergent-Resistant Plasma Membrane Microdomains in Arabidopsis thaliana During Cold Acclimation. Plant and Cell Physiology, 2009, 50, 341-359.	1.5	145
39	Chilling induces a decrease in pyrophosphate-dependent H+-accumulation associated with a ΔpHvac-stat in mung bean, a chill-sensitive plant. Plant, Cell and Environment, 2008, 31, 288-300.	2.8	12
40	Cryobehavior of the Plasma Membrane in Protoplasts Isolated from Cold-Acclimated Arabidopsis Leaves is Related to Surface Area Regulation. Plant and Cell Physiology, 2008, 49, 944-957.	1.5	23
41	Improved mathematical model for estimating H+ influx and H+ efflux in plant vacuolar vesicles acidified by ATPase or pyrophosphatase. Analytical Biochemistry, 2007, 369, 137-148.	1.1	4
42	Responses of the plasma membrane to low temperatures. Physiologia Plantarum, 2006, 126, 81-89.	2.6	212
43	Differential Expression of Vacuolar H+-ATPase Subunit c Genes in Tissues Active in Membrane Trafficking and Their Roles in Plant Growth as Revealed by RNAi. Plant Physiology, 2004, 134, 1514-1526.	2.3	114
44	Mass spectrometric approach for identifying putative plasma membrane proteins ofArabidopsisleaves associated with cold acclimation. Plant Journal, 2003, 36, 141-154.	2.8	241
45	Changes in the Plasma Membrane from Arabidopsis Thaliana within One Week of Cold Acclimation. , 2002, , 181-194.		6
46	ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. FEBS Journal, 2001, 268, 2801-2809.	0.2	16
47	Tissue Specificity of E Subunit Isoforms of Plant Vacuolar H+-ATPase and Existence of Isotype Enzymes. Journal of Biological Chemistry, 2000, 275, 6515-6522.	1.6	32
48	Stress-relaxation Analysis of Submerged and Air-grown Rice Coleoptiles: Correlations with Cell Wall Biosynthesis and Growth. Journal of Plant Physiology, 2000, 156, 689-694.	1.6	14
49	Alterations of Intracellular pH in Response to Low Temperature Stresses. Journal of Plant Research, 1999, 112, 225-236.	1.2	36
50	Characterization of Vacuolar H+-Atpases that are Sensitive and Tolerant to Cold. , 1997, , 237-244.		3