
Qingbo Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydrate Polymers, 2017, 177, 187-193.	5.1	187
2	ADAMTS-7 Inhibits Re-endothelialization of Injured Arteries and Promotes Vascular Remodeling Through Cleavage of Thrombospondin-1. Circulation, 2015, 131, 1191-1201.	1.6	125
3	Durable antimicrobial cotton textiles modified with inorganic nanoparticles. Cellulose, 2016, 23, 2791-2808.	2.4	118
4	One-pot fabrication of durable antibacterial cotton fabric coated with silver nanoparticles via carboxymethyl chitosan as a binder and stabilizer. Carbohydrate Polymers, 2019, 204, 42-49.	5.1	102
5	Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. International Journal of Biological Macromolecules, 2018, 111, 796-803.	3.6	88
6	Unspliced XBP1 Confers VSMC Homeostasis and Prevents Aortic Aneurysm Formation via FoxO4 Interaction. Circulation Research, 2017, 121, 1331-1345.	2.0	83
7	Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and l-cysteine. Applied Surface Science, 2019, 497, 143673.	3.1	76
8	Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect. Cellulose, 2018, 25, 2129-2141.	2.4	71
9	Superhydrophobic cotton fabric with excellent healability fabricated by the "grafting to―method using a diblock copolymer mist. Chemical Engineering Journal, 2020, 379, 122401.	6.6	70
10	NSun2 Deficiency Protects Endothelium From Inflammation via mRNA Methylation of ICAM-1. Circulation Research, 2016, 118, 944-956.	2.0	63
11	Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder. Fibers and Polymers, 2016, 17, 1782-1789.	1.1	56
12	Shift of Macrophage Phenotype Due to Cartilage Oligomeric Matrix Protein Deficiency Drives Atherosclerotic Calcification. Circulation Research, 2016, 119, 261-276.	2.0	51
13	Preparation of Copper Nanoparticles Coated Cotton Fabrics with Durable Antibacterial Properties. Fibers and Polymers, 2018, 19, 1004-1013.	1.1	43
14	Durable antimicrobial cotton fabric fabricated by carboxymethyl chitosan and quaternary ammonium salts. Cellulose, 2021, 28, 5867.	2.4	40
15	A "grafting through―strategy for constructing Janus cotton fabric by mist polymerization. Journal of Materials Chemistry A, 2020, 8, 24553-24562.	5.2	38
16	Excellent binding effect of <scp>l</scp> -methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing. RSC Advances, 2018, 8, 24458-24463.	1.7	36
17	Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions. Cellulose, 2020, 27, 6603-6615.	2.4	35
18	Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and silver nanoparticles. Fibers and Polymers, 2017, 18, 2204-2211.	1.1	33

QINGBO XU

#	Article	IF	CITATIONS
19	Double Protect Copper Nanoparticles Loaded on L-cysteine Modified Cotton Fabric with Durable Antibacterial Properties. Fibers and Polymers, 2018, 19, 2324-2334.	1.1	27
20	Fabrication of fluorine-free superhydrophobic cotton fabric using fumed silica and diblock copolymer via mist modification. Progress in Organic Coatings, 2020, 148, 105884.	1.9	25
21	Significant Improvement on Polybenzoxazine Toughness Achieved by Amine/Benzoxazine Copolymerizationâ€Induced Phase Separation. Macromolecular Chemistry and Physics, 2018, 219, 1700517.	1.1	21
22	Durable Antibacterial and UV Protective Properties of Cotton Fabric Coated with Carboxymethyl Chitosan and Ag/TiO2 Composite Nanoparticles. Fibers and Polymers, 2022, 23, 386-395.	1.1	20
23	Facile Fabrication of Durable Antibacterial Cotton Fabric Realized by Thioglycolic Acid and Silver Nanoparticles. Fibers and Polymers, 2018, 19, 2307-2316.	1.1	15
24	One-pot Modification on Cotton Fabric Using an Emulsion of Ag NPs Protected by Mercaptosuccinic Acid to Achieve Durably Antibacterial Effect. Fibers and Polymers, 2019, 20, 1803-1811.	1.1	15
25	Unexpected hydrophobic to hydrophilic transition of PET fabric treated in a deep eutectic solvent of choline chloride and oxalic acid. Polymer, 2021, 234, 124246.	1.8	14
26	A lipid coating on cotton fibers with enhanced adsorption capability for fabric functionalization. Cellulose, 2021, 28, 5957.	2.4	12
27	The Oligomer Polyacrylic Acid Effect on Immobilization of Silver Nanoparticles onto Cotton Fabric to Achieve a Durably Antibacterial Function. Fibers and Polymers, 2020, 21, 1965-1974.	1.1	6
28	Durably Antibacterial Cotton Fabric Prepared by a Combination of Betaine and Carboxymethyl Chitosan. Fibers and Polymers, 2022, 23, 617-625.	1.1	6
29	Durable antibacterial cotton fabric fabricated using a "self-created―mist polymerization device. International Journal of Biological Macromolecules, 2022, 216, 148-156.	3.6	6
30	Preparation of Durable Superhydrophobic Cotton Fabric for Self-cleaning and Oil-water Separation. Fibers and Polymers, 2022, 23, 1572-1581.	1.1	5
31	Durable Antibacterial and Antifouling Cotton Fabric Fabricated Using a Combination of Grafting Through Method and Mist Polymerization Technology. Fibers and Polymers, 2022, 23, 944-953.	1.1	4
32	Fabrication of Durably Superhydrophobic Cotton Fabrics by Polystyrene Latex Particles and Polydimethylsiloxane via Mist Polymerization Technology. Fibers and Polymers, 2022, 23, 1548-1559.	1.1	1