List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112432/publications.pdf Version: 2024-02-01

		22153	17592
171	15,475	59	121
papers	citations	h-index	g-index
173	173	173	15992
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Beaded nanofibers formed during electrospinning. Polymer, 1999, 40, 4585-4592.	3.8	2,157
2	Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000, 87, 4531-4547.	2.5	2,153
3	A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 2014, 49, 463-480.	3.7	483
4	Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials, 2017, 115, 115-127.	11.4	430
5	Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer, 2002, 43, 775-780.	3.8	382
6	Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 2009, 50, 2999-3006.	3.8	380
7	Electrospun polyimide nanofibers and their applications. Progress in Polymer Science, 2016, 61, 67-103.	24.7	332
8	Electrospun Carbon Nanofibers as Low-Cost Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 3572-3577.	8.0	295
9	Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. Journal of Power Sources, 2014, 247, 134-141.	7.8	289
10	Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Applied Materials & Interfaces, 2019, 11, 6685-6704.	8.0	261
11	Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3488-3493.	2.1	235
12	Electrospun Polycaprolactone 3D Nanofibrous Scaffold with Interconnected and Hierarchically Structured Pores for Bone Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 2238-2246.	7.6	224
13	Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers. Macromolecules, 2007, 40, 6283-6290.	4.8	194
14	Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy and Environmental Science, 2010, 3, 1507.	30.8	191
15	Flexible Nanoâ€felts of Carbideâ€Derived Carbon with Ultraâ€high Power Handling Capability. Advanced Energy Materials, 2011, 1, 423-430.	19.5	172
16	Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer, 2004, 45, 2427-2432.	3.8	168
17	Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. Journal of Membrane Science, 2011, 369, 499-505.	8.2	166
18	Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy, 2011, 88, 2106-2112.	10.1	150

#	Article	IF	CITATIONS
19	Continuous Nanoscale Carbon Fibers with Superior Mechanical Strength. Small, 2009, 5, 536-542.	10.0	148
20	Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer, 2007, 48, 2720-2728.	3.8	136
21	Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. Journal of Membrane Science, 2008, 319, 176-184.	8.2	132
22	Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dental Materials, 2005, 21, 520-529.	3.5	129
23	Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. Journal of Hazardous Materials, 2018, 344, 819-828.	12.4	128
24	Freeâ€Standing Polyurethane Nanofiber/Nets Air Filters for Effective PM Capture. Small, 2017, 13, 1702139.	10.0	126
25	Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Applied Surface Science, 2010, 257, 1092-1097.	6.1	119
26	Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir, 2012, 28, 14433-14440.	3.5	119
27	A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Materials Chemistry and Physics, 2010, 122, 548-555.	4.0	113
28	Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications. ACS Applied Materials & Interfaces, 2017, 9, 30014-30023.	8.0	107
29	Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 2010, 51, 2360-2367.	3.8	106
30	Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer, 2017, 114, 64-72.	3.8	104
31	Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. Journal of Power Sources, 2016, 325, 541-548.	7.8	102
32	Understanding polymorphism formation in electrospun fibers of immiscible Poly(vinylidene fluoride) blends. Polymer, 2011, 52, 2228-2237.	3.8	101
33	Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance. Polymer, 2007, 48, 6056-6063.	3.8	96
34	Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Applied Materials Today, 2018, 10, 194-202.	4.3	96
35	Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dental Materials, 2008, 24, 235-243.	3.5	95
36	High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. Journal of Power Sources, 2012, 201, 368-375.	7.8	93

#	Article	IF	CITATIONS
37	Electrospun TiO ₂ Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2014, 6, 5759-5767.	8.0	93
38	Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochimica Acta, 2017, 236, 417-423.	5.2	92
39	Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer, 2011, 52, 519-528.	3.8	91
40	Structure of Poly(ferrocenyldimethylsilane) in Electrospun Nanofibers. Macromolecules, 2001, 34, 6156-6158.	4.8	84
41	Fabrication and characterization of electrospun titania nanofibers. Journal of Materials Science, 2009, 44, 1198-1205.	3.7	84
42	Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells. Electrochimica Acta, 2014, 130, 431-438.	5.2	84
43	Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applications. Journal of Water Process Engineering, 2017, 16, 240-248.	5.6	84
44	Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: Methods, properties, and applications. Progress in Materials Science, 2020, 112, 100656.	32.8	84
45	Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage. Energy Conversion and Management, 2012, 64, 245-255.	9.2	82
46	Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. Composites Part B: Engineering, 2013, 44, 1-7.	12.0	80
47	Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy. Solar Energy Materials and Solar Cells, 2012, 103, 53-61.	6.2	79
48	Electrospinning and the Formation of Nanofibers. , 2001, , 225-246.		76
49	Electrospun Composite Nanofiber Fabrics Containing Uniformly Dispersed Antimicrobial Agents As an Innovative Type of Polymeric Materials with Superior Antimicrobial Efficacy. ACS Applied Materials & Interfaces, 2010, 2, 952-956.	8.0	74
50	Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers. Composites Part A: Applied Science and Manufacturing, 2011, 42, 337-344.	7.6	74
51	Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor. Journal of Materials Chemistry C, 2017, 5, 10288-10294.	5.5	74
52	Preparation, characterization, and encapsulation/release studies of a composite nanofiber mat electrospun from an emulsion containing poly(lactic-co-glycolic acid). Polymer, 2008, 49, 5294-5299.	3.8	73
53	Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon, 2009, 47, 1087-1095.	10.3	70
54	Hierarchical electrospun SiO2 nanofibers containing SiO2 nanoparticles with controllable surface-roughness and/or porosity. Materials Letters, 2010, 64, 1517-1520.	2.6	70

ΗΑΟ ΓΟΝG

#	Article	IF	CITATIONS
55	Aligned electrospun ZnO nanofibers for simple and sensitive ultraviolet nanosensors. Chemical Communications, 2009, , 2568.	4.1	67
56	Enhanced performance in dye-sensitized solar cells via carbon nanofibers–platinum composite counter electrodes. Nanoscale, 2012, 4, 4726.	5.6	67
57	Generation of polymer ultrafine fibers through solution (airâ€) blowing. Journal of Applied Polymer Science, 2009, 114, 3479-3486.	2.6	66
58	Electrospun Nanofibrous Polycaprolactone Scaffolds for Tissue Engineering of Annulus Fibrosus. Macromolecular Bioscience, 2011, 11, 391-399.	4.1	64
59	Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Composites Part B: Engineering, 2014, 58, 43-53.	12.0	62
60	Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 171, 31-39.	5.0	62
61	Dye-sensitized solar cells based on spray-coated carbon nanofiber/TiO2 nanoparticle composite counter electrodes. Journal of Materials Chemistry A, 2014, 2, 11448.	10.3	61
62	Electrospun nanofiber membranes surface functionalized with 3-dimensional nanolayers as an innovative adsorption medium with ultra-high capacity and throughput. Chemical Communications, 2010, 46, 3720.	4.1	60
63	Electron Transport and Recombination in Photoanode of Electrospun TiO ₂ Nanotubes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 1641-1646.	3.1	60
64	Self-Passivation of Polymer-Layered Silicate Nanocomposites. Chemistry of Materials, 2001, 13, 4123-4129.	6.7	58
65	Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. Journal of Biomedical Materials Research - Part A, 2011, 99A, 564-575.	4.0	58
66	Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dental Materials, 2012, 28, 1071-1079.	3.5	58
67	Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. Journal of Materials Chemistry, 2011, 21, 444-448.	6.7	57
68	Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Solar Energy Materials and Solar Cells, 2013, 109, 160-168.	6.2	57
69	Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas. Journal of Colloid and Interface Science, 2013, 398, 103-111.	9.4	57
70	Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval. Solar Energy Materials and Solar Cells, 2015, 132, 183-190.	6.2	57
71	Preparation and Characterization of Electrospun SiO ₂ Nanofibers. Journal of Nanoscience and Nanotechnology, 2008, 8, 1528-1536.	0.9	56
72	Electrospun blend nanofiber membrane consisting of polyurethane, amidoxime polyarcylonitrile, and β-cyclodextrin as high-performance carrier/support for efficient and reusable immobilization of laccase. Chemical Engineering Journal, 2018, 331, 517-526.	12.7	54

#	Article	IF	CITATIONS
73	Electrospun Regenerated Cellulose Nanofibrous Membranes Surface-Grafted with Polymer Chains/Brushes via the Atom Transfer Radical Polymerization Method for Catalase Immobilization. ACS Applied Materials & Interfaces, 2014, 6, 20958-20967.	8.0	53
74	Electrospun nanoâ€scaled glass fiber reinforcement of bisâ€GMA/TEGDMA dental composites. Journal of Applied Polymer Science, 2008, 110, 2063-2070.	2.6	52
75	Luminescence Properties of Eu(III) Complex/Polyvinylpyrrolidone Electrospun Composite Nanofibers. Journal of Physical Chemistry C, 2010, 114, 3898-3903.	3.1	51
76	SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Advances, 2013, 3, 8998.	3.6	51
77	Hot-pressed PAN/PVDF hybrid electrospun nanofiber membranes for ultrafiltration. Journal of Membrane Science, 2020, 611, 118327.	8.2	50
78	Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles. Applied Physics Letters, 2011, 98, 082114.	3.3	48
79	Nanodroplet formation and exclusive homogenously nucleated crystallization inÂconfined electrospun immiscible polymer blend fibers of polystyrene andÂpoly(ethylene oxide). Polymer, 2011, 52, 5397-5402.	3.8	46
80	Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers. RSC Advances, 2013, 3, 6640.	3.6	46
81	Surface-functionalized electrospun carbon nanofiber mats as an innovative type of protein adsorption/purification medium with high capacity and high throughput. Journal of Chromatography A, 2011, 1218, 8989-8995.	3.7	45
82	Electrospun polyimide nanofiber membranes for high flux and low fouling microfiltration applications. Journal of Membrane Science, 2014, 466, 142-150.	8.2	45
83	Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells. RSC Advances, 2016, 6, 11481-11487.	3.6	45
84	Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds. Carbohydrate Polymers, 2018, 179, 164-172.	10.2	45
85	Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework. Composites Part B: Engineering, 2012, 43, 2382-2388.	12.0	44
86	Preparation and evaluation of nanoâ€epoxy composite resins containing electrospun glass nanofibers. Journal of Applied Polymer Science, 2012, 124, 444-451.	2.6	43
87	Synthesis of continuous TiC nanofibers and/or nanoribbons through electrospinning followed by carbothermal reduction. Nanoscale, 2010, 2, 1670.	5.6	41
88	Flexible, Transferable, and Thermal-Durable Dye-Sensitized Solar Cell Photoanode Consisting of TiO ₂ Nanoparticles and Electrospun TiO ₂ /SiO ₂ Nanofibers. ACS Applied Materials & Interfaces, 2014, 6, 15925-15932.	8.0	41
89	Investigation of Palm Oil as Green Plasticizer on the Processing and Mechanical Properties of Ethylene Propylene Diene Monomer Rubber. Industrial & Engineering Chemistry Research, 2016, 55, 2784-2789.	3.7	41
90	Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors. Applied Physics Letters, 2012, 100, .	3.3	40

#	Article	IF	CITATIONS
91	Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures. Polymer, 2018, 151, 299-306.	3.8	40
92	Structure and thermo-chemical properties of continuous bundles of aligned and stretched electrospun polyacrylonitrile precursor nanofibers collected in a flowing water bath. Carbon, 2012, 50, 1262-1270.	10.3	39
93	Immobilization of Catalase on Electrospun PVA/PA6–Cu(II) Nanofibrous Membrane for the Development of Efficient and Reusable Enzyme Membrane Reactor. Environmental Science & Technology, 2014, 48, 10390-10397.	10.0	38
94	Electrospun Regenerated Cellulose Nanofiber Membranes Surface-Grafted with Water-Insoluble Poly(HEMA) or Water-Soluble Poly(AAS) Chains via the ATRP Method for Ultrafiltration of Water. ACS Applied Materials & Interfaces, 2017, 9, 4272-4278.	8.0	38
95	Nano-fiber/net structured PVA membrane: Effects of formic acid as solvent and crosslinking agent on solution properties and membrane morphological structures. Materials and Design, 2017, 120, 135-143.	7.0	38
96	Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning. Nanoscale, 2012, 4, 7369.	5.6	36
97	Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application. Materials Letters, 2012, 68, 133-136.	2.6	36
98	Electrospun TiC/C nano-felt surface-decorated with Pt nanoparticles as highly efficient and cost-effective counter electrode for dye-sensitized solar cells. Nanoscale, 2013, 5, 11742.	5.6	34
99	Formation and morphological stability of polybutadiene rubber fibers prepared through combination of electrospinning and in-situ photo-crosslinking. Materials Letters, 2011, 65, 3076-3079.	2.6	33
100	Nonisocyanate Biobased Poly(ester urethanes) with Tunable Properties Synthesized via an Environment-Friendly Route. ACS Sustainable Chemistry and Engineering, 2016, 4, 2762-2770.	6.7	33
101	Flexible lignin-derived carbon nanofiber substrates functionalized with iron (III) oxide nanoparticles as lithium-ion battery anodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 100-104.	3.5	33
102	Hybrid multi-scale composites developed from glass microfiber fabrics and nano-epoxy resins containing electrospun glass nanofibers. Composites Part B: Engineering, 2012, 43, 309-316.	12.0	32
103	Mechanically flexible electrospun carbon nanofiber mats derived from biochar and polyacrylonitrile. Materials Letters, 2017, 205, 206-210.	2.6	32
104	Fluorescence studies of electrospun MEH-PPV/PEO nanofibers. Synthetic Metals, 2009, 159, 1454-1459.	3.9	31
105	Process and economic evaluation for monoclonal antibody purification using a membraneâ€only process. Biotechnology Progress, 2011, 27, 1297-1305.	2.6	30
106	Synthesis of Cellulose- <i>graft</i> -Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS Applied Materials & Interfaces, 2017, 9, 41055-41065.	8.0	28
107	Evolution of nanodroplets and fractionated crystallization in thermally annealed electrospun blend fibers of poly(vinylidene fluoride) and polysulfone. Polymer, 2012, 53, 4472-4480.	3.8	27
108	The Improvement of Thermal Stability and Conductivity via Incorporation of Carbon Nanofibers into Electrospun Ultrafine Composite Fibers of Lauric Acid/Polyamide 6 Phase Change Materials for Thermal Energy Storage. International Journal of Green Energy, 2014, 11, 861-875.	3.8	27

#	Article	IF	CITATIONS
109	Electrospun ZnO/SiO2 hybrid nanofibrous mat for flexible ultraviolet sensor. Applied Physics Letters, 2014, 104, .	3.3	27
110	Effects of chemical composition and post-spinning stretching process on the morphological, structural, and thermo-chemical properties of electrospun polyacrylonitrile copolymer precursor nanofibers. Polymer, 2015, 61, 20-28.	3.8	27
111	Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Materials and Design, 2016, 95, 387-397.	7.0	27
112	Structural effects of core-modified porphyrins in dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2009, 13, 903-909.	0.8	26
113	Halloysite nanotubes sponges with skeletons made of electrospun nanofibers as innovative dye adsorbent and catalyst support. Chemical Engineering Journal, 2019, 360, 280-288.	12.7	26
114	CVD grown CNTs within iron modified and graphitized carbon aerogel as durable oxygen reduction catalysts in acidic medium. Carbon, 2014, 79, 518-528.	10.3	25
115	Reduction of crack formation in TiO 2 mesoporous films prepared from binder-free nanoparticle pastes via incorporation of electrospun SiO 2 or TiO 2 nanofibers for dye-sensitized solar cells. Nano Energy, 2015, 12, 794-800.	16.0	25
116	Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale, 2016, 8, 18376-18389.	5.6	25
117	Highâ€performance polyimide nanofibers reinforced polyimide nanocomposite films fabricated by coâ€electrospinning followed by hotâ€pressing. Journal of Applied Polymer Science, 2018, 135, 46849.	2.6	25
118	Elastic Mineralized 3D Electrospun PCL Nanofibrous Scaffold for Drug Release and Bone Tissue Engineering. ACS Applied Bio Materials, 2021, 4, 3639-3648.	4.6	25
119	Rechargeable Antibacterial and Antifungal Polymeric Silver Sulfadiazines. Journal of Bioactive and Compatible Polymers, 2009, 24, 350-367.	2.1	23
120	Carbon Nanofibrous Sponge Made from Hydrothermally Generated Biochar and Electrospun Polymer Nanofibers. Advanced Fiber Materials, 2020, 2, 74-84.	16.1	23
121	Flexible composite felt of electrospun TiO2 and SiO2 nanofibers infused with TiO2 nanoparticles for lithium ion battery anode. Electrochimica Acta, 2016, 190, 811-816.	5.2	22
122	Nanofiber multilayer membranes with tailored nanochannels prepared by molecular layer-by-layer assembly for high throughput separation. Journal of Materials Chemistry A, 2017, 5, 4616-4628.	10.3	21
123	Mechanical properties and reinforcement mechanisms of hydrogenated acrylonitrile butadiene rubber composites containing fibrillar silicate nanofibers and short aramid microfibers. Journal of Applied Polymer Science, 2011, 120, 1439-1447.	2.6	19
124	Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form-stable phase change materials for storage and retrieval of thermal energy. International Journal of Energy Research, 2013, 37, 657-664.	4.5	19
125	Mechanically resilient electrospun TiC nanofibrous mats surface-decorated with Pt nanoparticles for oxygen reduction reaction with enhanced electrocatalytic activities. Nanoscale, 2013, 5, 3643.	5.6	19
126	Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. Nanotechnology, 2017, 28, 31LT02.	2.6	19

#	Article	IF	CITATIONS
127	Synthesis and Characterization of Zirconium Tungstate Ultra-Thin Fibers. Crystal Growth and Design, 2009, 9, 667-670.	3.0	17
128	Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of lauric acid and polyamide 6 as thermal energy storage materials. Fibers and Polymers, 2012, 13, 837-845.	2.1	17
129	Fabrication and evaluation of dye-sensitized solar cells with photoanodes based on electrospun TiO2 nanotubes. Materials Letters, 2013, 106, 115-118.	2.6	17
130	Mechanically flexible hybrid mat consisting of TiO2 and SiO2 nanofibers electrospun via dual spinnerets for photo-detector. Materials Letters, 2014, 120, 219-223.	2.6	17
131	Electrical properties of electrospun carbon nanofibers. Journal of Materials Science, 2011, 46, 6453-6456.	3.7	16
132	Parameter dependence of conic angle of nanofibres during electrospinning. Journal Physics D: Applied Physics, 2011, 44, 435401.	2.8	16
133	Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers. Materials Letters, 2016, 176, 194-198.	2.6	16
134	A Metal Matrix Composite Prepared from Electrospun TiO2 Nanofibers and an Al 1100 Alloy via Friction Stir Processing. ACS Applied Materials & Interfaces, 2009, 1, 987-991.	8.0	15
135	Preparation, Morphology and Properties of Electrospun Lauric Acid/PET Form-Stable Phase Change Ultrafine Composite Fibres. Polymers and Polymer Composites, 2011, 19, 773-780.	1.9	14
136	Hybrid multiâ€scale epoxy composites containing conventional glass microfibers and electrospun glass nanofibers with improved mechanical properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
137	High-strength electrospun carbon nanofibrous mats prepared via rapid stabilization as frameworks for Li-ion battery electrodes. Journal of Materials Science, 2019, 54, 11574-11584.	3.7	14
138	Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Composites Part A: Applied Science and Manufacturing, 2011, , .	7.6	13
139	Bis-GMA/TEGDMA dental composites reinforced with nano-scaled single crystals of fibrillar silicate. Journal of Materials Science, 2010, 45, 2521-2524.	3.7	11
140	Electrospun composite nanofibers of polybutadiene rubber containing uniformly distributed Ag nanoparticles. Materials Letters, 2012, 84, 5-8.	2.6	11
141	Fabrication, Structural Morphology and Thermal Energy Storage/Retrieval of Ultrafine Phase Change Fibres Consisting of Polyethylene Glycol and Polyamide 6 by Electrospinning. Polymers and Polymer Composites, 2013, 21, 525-532.	1.9	11
142	Superhydrophobic and elastic 3D conductive sponge made from electrospun nanofibers and reduced graphene oxide for sweatproof wearable tactile pressure sensor. Polymer, 2021, 230, 124025.	3.8	11
143	Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT	Overlock	2 10 Tf 50 1
144	Continuous bundles of aligned electrospun polyacrylonitrile copolymer nanofibers prepared via the flowing water bath and their morphological, structural, and componential variations during the opposite-directional diffusion process. Polymer, 2013, 54, 4987-4996.	3.8	10

#	Article	IF	CITATIONS
145	Evaluation of Counter Electrodes Composed by Carbon Nanofibers and Nanoparticles in Dye-Sensitized Solar Cells. IEEE Transactions on Electron Devices, 2013, 60, 3883-3887.	3.0	10
146	Effects of water contents and postcuring conditions on Bis-GMA/TEGDMA dental restorative composite resins. Journal of Applied Polymer Science, 2004, 94, 492-502.	2.6	9
147	Luminescence studies of electrospun core–sheath fibers with the core component being a rubber nanocomposite containing a Eu(iii) complex. Journal of Materials Chemistry C, 2013, 1, 1613.	5.5	9
148	Bone Tissue Engineering: Electrospun Polycaprolactone 3D Nanofibrous Scaffold with Interconnected and Hierarchically Structured Pores for Bone Tissue Engineering (Adv. Healthcare) Tj ETQq0 0 0 r	gB 7.¢ Overle	ock 10 Tf 50
149	Hybrid multi-scale thermoplastic composites reinforced with interleaved nanofiber mats using in-situ polymerization of cyclic butylene terephthalate. Composites Communications, 2019, 12, 91-97.	6.3	9
150	Manipulating the Collective Surface Plasmon Resonances of Aligned Gold Nanorods in Electrospun Composite Nanofibers. Journal of Physical Chemistry C, 2013, 117, 21490-21497.	3.1	8
151	Polymeric Nanofibers: Introduction. ACS Symposium Series, 2006, , 1-6.	0.5	7
152	Mathematical model using non-uniform flow distribution for dynamic protein breakthrough with membrane adsorption media. Journal of Chromatography A, 2011, 1218, 9121-9127.	3.7	7
153	Simultaneous Electrospinning and Electrospraying for the Preparation of a Precursor Membrane Containing Hydrothermally Generated Biochar Particles to Produce the Value-Added Product of Carbon Nanofibrous Felt. Polymers, 2021, 13, 676.	4.5	7
154	Preparation and characterization of electrospun SiO2 nanofibers. Journal of Nanoscience and Nanotechnology, 2008, 8, 1528-36.	0.9	7
155	Electrospun carbon nanofibrous mats surface-decorated with Pd nanoparticles via the supercritical CO2 method for sensing of H2. RSC Advances, 2012, 2, 10195.	3.6	6
156	An Innovative Approach for the Preparation of High-Performance Electrospun Poly(<i>p</i> -phenylene)-Based Polymer Nanofiber Belts. Macromolecules, 2017, 50, 9760-9772.	4.8	6
157	Preparation of Gd ₂ O ₃ nano-flakes and fabrication/evaluation of their X-ray shielding rubber nanocomposites with improved mechanical properties. Journal of Composite Materials, 2015, 49, 1989-1994.	2.4	5
158	A freestanding cathode with bimetallic MOF-based composites anchored on N-doped porous carbon nanofibers for lithium-oxygen batteries. Electrochimica Acta, 2021, 397, 139251.	5.2	5
159	Electrophoretic deposition of different carbon nanoscale reinforcements on carbon fiber fabrics and mechanical properties of the resulting hybrid multi-scale epoxy composites. Polymer Composites, 2014, 35, 1229-1237.	4.6	4
160	Metal Oxides Modified Mesoporous Carbon Supports as Anode Catalysts in DMFC. ECS Transactions, 2013, 45, 35-45.	0.5	3
161	Synthesis and luminescence studies of poly(vinyl acetate)–Eu (III) coordination compound. Journal of Applied Polymer Science, 2007, 103, 3617-3622.	2.6	2
162	STORAGE MATERIALS: Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability (Adv. Energy Mater. 3/2011). Advanced Energy Materials, 2011, 1, 422-422.	19.5	2

#	Article	IF	CITATIONS
163	Nanodroplet Formations in Electrospun Fibers of Immiscible Polymer Blends and Their Effects on Fractionated Crystallization. Lecture Notes in Nanoscale Science and Technology, 2013, , 25-50.	0.8	2
164	Electrospun TiC/C composite nanofibrous felt and its energy-related applications. , 2017, , 341-369.		2
165	Investigation of the Formation of Carbon and Graphite Nanofiber from Mesophase Pitch Nanofiber Precursor. ACS Symposium Series, 2006, , 285-299.	0.5	1
166	Metal Oxides as Catalyst Promoters for Methanol Oxidation. Materials Research Society Symposia Proceedings, 2012, 1446, 60.	0.1	1
167	Influences of gamma irradiation on structure, thermal stability and thermal energy storage properties of form stable phase change materials. Journal of the Energy Institute, 2012, 85, 44-49.	5.3	1
168	3D-Graphitized and Iron Modified Carbon Aerogels for Sustainable Energy Applications. ECS Transactions, 2013, 50, 1277-1286.	0.5	1
169	Electrospun three-dimensional nanofibrous scaffolds based on polycaprolactone for stem cells differentiation and bone regeneration. , 2021, , 179-215.		1
170	PbS quantum dots embedded TiO <inf>2</inf> nanofibers for dye-sensitized solar cells. , 2009, , .		0
171	Effect of FeCl3 on the morphology, wetting behavior, and stabilization/carbonization of polyacrylonitrile nanofibers prepared by electrospinning. E-Polymers, 2012, 12, .	3.0	0