Deanna D'Alessandro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie - International Edition, 2010, 49, 6058-6082.	7.2	3,452
2	Strong CO ₂ Binding in a Water-Stable, Triazolate-Bridged Metalâ^'Organic Framework Functionalized with Ethylenediamine. Journal of the American Chemical Society, 2009, 131, 8784-8786.	6.6	1,047
3	Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chemical Science, 2011, 2, 2022.	3.7	491
4	Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chemical Society Reviews, 2006, 35, 424-40.	18.7	324
5	Intervalence Charge Transfer (IVCT) in Trinuclear and Tetranuclear Complexes of Iron, Ruthenium, and Osmium. Chemical Reviews, 2006, 106, 2270-2298.	23.0	297
6	Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives. Chemical Communications, 2016, 52, 8957-8971.	2.2	290
7	Defect engineering of UiO-66 for CO ₂ and H ₂ O uptake – a combined experimental and simulation study. Dalton Transactions, 2016, 45, 4496-4500.	1.6	171
8	A cautionary warning on the use of electrochemical measurements to calculate comproportionation constants for mixed-valence compounds. Dalton Transactions, 2004, , 3950.	1.6	165
9	High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes. Nature Chemistry, 2010, 2, 362-368.	6.6	154
10	Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 918-931.	5.2	151
11	Photo―and Electronically Switchable Spin rossover Iron(II) Metal–Organic Frameworks Based on a Tetrathiafulvalene Ligand. Angewandte Chemie - International Edition, 2017, 56, 5465-5470.	7.2	148
12	Towards Conducting Metal-Organic Frameworks. Australian Journal of Chemistry, 2011, 64, 718.	0.5	120
13	Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6622-6630.	6.6	120
14	Photoresponsive spiropyran-functionalised MOF-808: postsynthetic incorporation and light dependent gas adsorption properties. Journal of Materials Chemistry A, 2016, 4, 10816-10819.	5.2	114
15	Radicals in metal–organic frameworks. RSC Advances, 2014, 4, 17498-17512.	1.7	112
16	Rapid determination of the optical and redox properties of a metal–organic framework via in situ solid state spectroelectrochemistry. Chemical Communications, 2012, 48, 3945.	2.2	111
17	Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chemical Communications, 2013, 49, 3706.	2.2	108
18	Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives. Coordination Chemistry Reviews, 2017, 345, 342-361.	9.5	105

#	Article	IF	CITATIONS
19	Intrinsically conducting metal–organic frameworks. MRS Bulletin, 2016, 41, 858-864.	1.7	104
20	Porous Molecular Conductor: Electrochemical Fabrication of Through-Space Conduction Pathways among Linear Coordination Polymers. Journal of the American Chemical Society, 2019, 141, 6802-6806.	6.6	94
21	Tuning pore size in a zirconium–tricarboxylate metal–organic framework. CrystEngComm, 2014, 16, 6530-6533.	1.3	84
22	A Metal–Organic Framework Based on a Nickel Bis(dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor. Journal of the American Chemical Society, 2020, 142, 20313-20317.	6.6	83
23	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	11.1	82
24	Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213891.	9.5	80
25	Mixed Valency as a Strategy for Achieving Charge Delocalization in Semiconducting and Conducting Framework Materials. Inorganic Chemistry, 2017, 56, 14373-14382.	1.9	78
26	Synthesis and Characterization of Ruthenium and Ironâ^'Ruthenium Prussian Blue Analogues. Chemistry of Materials, 2009, 21, 1922-1926.	3.2	75
27	Persistent Radical Tetrathiafulvaleneâ€Based 2D Metalâ€Organic Frameworks and Their Application in Efficient Photothermal Conversion. Angewandte Chemie - International Edition, 2021, 60, 4789-4795.	7.2	74
28	Microwave-Assisted Solvothermal Synthesis and Optical Properties of Tagged MIL-140A Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 12878-12880.	1.9	72
29	Perspectives on metal–organic frameworks with intrinsic electrocatalytic activity. CrystEngComm, 2017, 19, 4049-4065.	1.3	72
30	Redox Activities of Metal–Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers. Inorganic Chemistry, 2019, 58, 3698-3706.	1.9	66
31	Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482, 49-55.	4.1	65
32	Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 2018, 9, 3508-3516.	3.7	65
33	Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal–organic framework. Dalton Transactions, 2013, 42, 9831.	1.6	64
34	Mixed Valency in a 3D Semiconducting Iron–Fluoranilate Coordination Polymer. Inorganic Chemistry, 2017, 56, 9025-9035.	1.9	64
35	Tuning the functional sites in metal–organic frameworks to modulate CO ₂ heats of adsorption. CrystEngComm, 2015, 17, 706-718.	1.3	60
36	UiO-66@SiO ₂ core–shell microparticles as stationary phases for the separation of small organic molecules. Analyst, The, 2017, 142, 517-524.	1.7	57

#	Article	IF	CITATIONS
37	[V ₁₆ O ₃₈ (CN)] ^{9–} : A Soluble Mixed-Valence Redox-Active Building Block with Strong Antiferromagnetic Coupling. Inorganic Chemistry, 2012, 51, 9192-9199.	1.9	55
38	Redox tunable viologen-based porous organic polymers. Journal of Materials Chemistry C, 2016, 4, 2535-2544.	2.7	55
39	Mono- and di-nuclear complexes of the ligands 3,4-di(2-pyridyl)-1,2,5-oxadiazole and 3,4-di(2-pyridyl)-1,2,5-thiadiazole; new bridges allowing unusually strong metal–metal interactions. Dalton Transactions RSC, 2002, , 2775-2785.	2.3	53
40	Role of NEt ₄ ⁺ in Orienting and Locking Together [M ₂ lig ₃] ^{2–} (6,3) Sheets (H ₂ lig = Chloranilic or) Tj ETQq0 Design, 2017, 17, 1465-1470.) 0 0 rgBT 1.4	/Overlock 10
41	Crystal Structures, Magnetic Properties, and Electrochemical Properties of Coordination Polymers Based on the Tetra(4-pyridyl)-tetrathiafulvalene Ligand. Inorganic Chemistry, 2015, 54, 10766-10775.	1.9	50
42	The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 2019, 148, 277-289.	5.4	50
43	The Electrochemical Transformation of the Zeolitic Imidazolate Framework ZIF-67 in Aqueous Electrolytes. Electrochimica Acta, 2015, 153, 433-438.	2.6	49
44	Tuning the cavities of zirconium-based MIL-140 frameworks to modulate CO ₂ adsorption. Chemical Communications, 2015, 51, 11286-11289.	2.2	47
45	Reversible single crystal-to-single crystal double [2+2] cycloaddition induces multifunctional photo-mechano-electrochemical properties in framework materials. Nature Communications, 2020, 11, 2808.	5.8	46
46	A Mixedâ€ S pin Molecular Square with a Hybrid [2×2]Grid/Metallocyclic Architecture. Angewandte Chemie - International Edition, 2011, 50, 2820-2823.	7.2	45
47	Stereochemical Influences on Intervalence Charge Transfer in Homodinuclear Complexes of Ruthenium. Inorganic Chemistry, 2001, 40, 6841-6844.	1.9	42
48	Application of the piperazine-grafted CuBTTri metal-organic framework in postcombustion carbon dioxide capture. Microporous and Mesoporous Materials, 2013, 174, 74-80.	2.2	41
49	A spectroscopic and electrochemical investigation of a tetrathiafulvalene series of metal–organic frameworks. Polyhedron, 2018, 154, 334-342.	1.0	41
50	Toward carbon dioxide capture using nanoporous materials. Pure and Applied Chemistry, 2010, 83, 57-66.	0.9	40
51	Crystal Structures, Gas Adsorption, and Electrochemical Properties of Electroactive Coordination Polymers Based on the Tetrathiafulvalene-Tetrabenzoate Ligand. Crystal Growth and Design, 2015, 15, 1861-1870.	1.4	40
52	Concomitant Use of Tetrathiafulvalene and 7,7,8,8-Tetracyanoquinodimethane within the Skeletons of Metal–Organic Frameworks: Structures, Magnetism, and Electrochemistry. Inorganic Chemistry, 2019, 58, 8657-8664.	1.9	39
53	Intervalence Charge Transfer (IVCT) in Ruthenium Dinuclear and Trinuclear Assemblies Containing the Bridging Ligand HAT {1,4,5,8,9,12-hexaazatriphenylene}. Chemistry - A European Journal, 2005, 11, 3679-3688.	1.7	38
54	Electronic, Optical, and Computational Studies of a Redox-Active Napthalenediimide-Based Coordination Polymer. Inorganic Chemistry, 2013, 52, 14246-14252.	1.9	37

#	Article	IF	CITATIONS
55	Probing the Transition between the Localised (Class II) and Localised-to-Delocalised (Class II–III) Regimes by Using Intervalence Charge-Transfer Solvatochromism in a Series of Mixed-Valence Dinuclear Ruthenium Complexes. Chemistry - A European Journal, 2006, 12, 4873-4884.	1.7	36
56	Underlying Spinâ^'Orbit Coupling Structure of Intervalence Charge Transfer Bands in Dinuclear Polypyridyl Complexes of Ruthenium and Osmium. Inorganic Chemistry, 2006, 45, 3261-3274.	1.9	35
57	Experimental and Computational Studies of a Multiâ€Electron Donor–Acceptor Ligand Containing the Thiazolo[5,4â€ <i>d</i>]thiazole Core and its Incorporation into a Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 17597-17605.	1.7	35
58	Structural and optical investigations of charge transfer complexes involving the radical anions of TCNQ and F ₄ TCNQ. CrystEngComm, 2016, 18, 8906-8914.	1.3	34
59	Electrochemical and optical properties of a redox-active Cu(ii) coordination framework incorporating the tris(4-(pyridin-4-yl)phenyl)amine ligand. Dalton Transactions, 2013, 42, 6310.	1.6	33
60	Exploiting stable radical states for multifunctional properties in triarylamine-based porous organic polymers. Journal of Materials Chemistry A, 2014, 2, 12466-12474.	5.2	33
61	Influence of structure–activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units. Chemical Science, 2019, 10, 1392-1400.	3.7	32
62	Enhanced dielectricity coupled to spin-crossover in a one-dimensional polymer iron(ii) incorporating tetrathiafulvalene. Chemical Science, 2020, 11, 6229-6235.	3.7	32
63	Carbon dioxide adsorption by physisorption and chemisorption interactions in piperazine-grafted Ni2(dobdc) (dobdc = 1,4-dioxido-2,5-benzenedicarboxylate). Dalton Transactions, 2012, 41, 11739.	1.6	30
64	Site Isolation Leads to Stable Photocatalytic Reduction of CO ₂ over a Rheniumâ€Based Catalyst. Chemistry - A European Journal, 2015, 21, 18576-18579.	1.7	30
65	Photo―and Electronically Switchable Spinâ€Crossover Iron(II) Metal–Organic Frameworks Based on a Tetrathiafulvalene Ligand. Angewandte Chemie, 2017, 129, 5557-5562.	1.6	29
66	3D printing of metal–organic framework composite materials for clean energy and environmental applications. Journal of Materials Chemistry A, 2021, 9, 27252-27270.	5.2	29
67	A Mn(<scp>ii</scp>) coordination framework incorporating the redox-active tris(4-(pyridin-4-yl)phenyl)amine ligand (NPy ₃): electrochemical and spectral properties. CrystEngComm, 2014, 16, 6331-6334.	1.3	28
68	Probing charge transfer characteristics in a donor–acceptor metal–organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Physical Chemistry Chemical Physics, 2018, 20, 25772-25779.	1.3	28
69	In Situ Spectroelectrochemical Investigations of the Redox-Active Tris[4-(pyridin-4-yl)phenyl]amine Ligand and a Zn ²⁺ Coordination Framework. Inorganic Chemistry, 2016, 55, 7270-7280.	1.9	27
70	Metal–metal interactions in dinuclear ruthenium complexes containing bridging 4,5-di(2-pyridyl)imidazolates and related ligands. Dalton Transactions, 2006, , 1954-1962.	1.6	26
71	Diastereoisomers as probes for solvent reorganizational effects on IVCT in dinuclear ruthenium complexes. Chemical Physics, 2006, 324, 8-25.	0.9	26
72	The Effective Electron-Transfer Distance in Dinuclear Ruthenium Complexes Containing the Unsymmetrical Bridging Ligand 3,5-Bis(2-pyridyl)-1,2,4-triazolate. European Journal of Inorganic Chemistry, 2006, 2006, 772-783.	1.0	26

DEANNA D'ALESSANDRO

#	Article	IF	CITATIONS
73	The first example of a zirconium-oxide based metal–organic framework constructed from monocarboxylate ligands. Dalton Transactions, 2015, 44, 1516-1519.	1.6	26
74	Ruthenium(II) Complexes of Multidentate Ligands Derived from Di(2-pyridyl)methane. Australian Journal of Chemistry, 2003, 56, 657.	0.5	25
75	Thermal Spin Crossover Behaviour of Two-Dimensional Hofmann-Type Coordination Polymers Incorporating Photoactive Ligands. Australian Journal of Chemistry, 2014, 67, 1563.	0.5	25
76	The spectroelectrochemical behaviour of redox-active manganese salen complexes. Dalton Transactions, 2019, 48, 3704-3713.	1.6	25
77	Structural and optical investigations of charge transfer complexes involving the F4TCNQ dianion. CrystEngComm, 2014, 16, 5234.	1.3	22
78	Flow-dependent separation selectivity for organic molecules on metal–organic frameworks containing adsorbents. Chemical Communications, 2016, 52, 5301-5304.	2.2	22
79	Multisite Effects on Intervalence Charge Transfer in a Clusterlike Trinuclear Assembly Containing Ruthenium and Osmium. Inorganic Chemistry, 2006, 45, 1656-1666.	1.9	21
80	Rareâ€Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redoxâ€Switchable Singleâ€Molecule Magnets. Chemistry - A European Journal, 2021, 27, 622-627.	1.7	21
81	Metal–metal interactions in dinuclear ruthenium complexes incorporating "stepped-parallel― bridging ligands: synthesis, stereochemistry and intervalence charge transfer. New Journal of Chemistry, 2006, 30, 228.	1.4	20
82	Concentration-Dependent Binding of CO ₂ and CD ₄ in UiO-66(Zr). Journal of Physical Chemistry C, 2015, 119, 6980-6987.	1.5	19
83	A cofacial metal–organic framework based photocathode for carbon dioxide reduction. Chemical Science, 2021, 12, 3608-3614.	3.7	19
84	Differential Ion-pairing and Temperature Effects on Intervalence Charge Transfer (IVCT) in a Series of Dinuclear Ruthenium Complexes. Supramolecular Chemistry, 2005, 17, 529-542.	1.5	18
85	Systematic Tuning of Zn(II) Frameworks with Furan, Thiophene, and Selenophene Dipyridyl and Dicarboxylate Ligands. Crystal Growth and Design, 2017, 17, 6262-6272.	1.4	18
86	Guest–Host Complexes of TCNQ and TCNE with Cu ₃ (1,3,5-benzenetricarboxylate) ₂ . Journal of Physical Chemistry C, 2017, 121, 26330-26339.	1.5	18
87	Electroactive Co(<scp>iii</scp>) salen metal complexes and the electrophoretic deposition of their porous organic polymers onto glassy carbon. RSC Advances, 2018, 8, 24128-24142.	1.7	18
88	Quantification of the mixed-valence and intervalence charge transfer properties of a cofacial metal–organic framework <i>via</i> single crystal electronic absorption spectroscopy. Chemical Science, 2020, 11, 5213-5220.	3.7	18
89	The electronic, optical and magnetic consequences of delocalization in multifunctional donor–acceptor organic polymers. Physical Chemistry Chemical Physics, 2015, 17, 11252-11259.	1.3	17
90	Persistent Radical Tetrathiafulvaleneâ€Based 2D Metalâ€Organic Frameworks and Their Application in Efficient Photothermal Conversion. Angewandte Chemie, 2021, 133, 4839-4845.	1.6	17

DEANNA D'ALESSANDRO

#	Article	IF	CITATIONS
91	Intervalence charge transfer in the stereoisomers of a dinuclear ruthenium complex containing the bridging ligand dibenzoeilatin. Dalton Transactions, 2005, , 332.	1.6	16
92	Stereochemical effects on intervalence charge transfer. Pure and Applied Chemistry, 2008, 80, 1-16.	0.9	16
93	Tuning Charge-State Localization in a Semiconductive Iron(III)–Chloranilate Framework Magnet Using a Redox-Active Cation. Chemistry of Materials, 2020, 32, 7551-7563.	3.2	16
94	Facile redox state manipulation in Cu(i) frameworks by utilisation of the redox-active tris(4-(pyridin-4-yl)phenyl)amine ligand. Dalton Transactions, 2015, 44, 15297-15303.	1.6	15
95	Controlling Interpenetration in Electroactive Co(II) Frameworks Based on the Tris(4-(pyridin-4-yl)phenyl)amine Ligand. Crystal Growth and Design, 2016, 16, 1149-1155.	1.4	15
96	Effects of Mixed Valency in an Fe-Based Framework: Coexistence of Slow Magnetic Relaxation, Semiconductivity, and Redox Activity. Inorganic Chemistry, 2020, 59, 3619-3630.	1.9	15
97	Intervalence charge transfer in a "chain-like―ruthenium trinuclear assembly based on the bridging ligand 4,7-phenanthrolino-5,6:5′,6′-pyrazine (ppz). Dalton Transactions, 2006, , 1060-1072.	1.6	14
98	Post-synthetic pore-space expansion in a di-tagged metal–organic framework. CrystEngComm, 2014, 16, 9158-9162.	1.3	14
99	Highly unusual interpenetration isomers of electroactive nickel bis(dithiolene) coordination frameworks. Chemical Communications, 2014, 50, 12772-12774.	2.2	13
100	Prospects for electroactive andÂconducting framework materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180226.	1.6	13
101	Progressive Structure Designing and Property Tuning of Manganese(II) Coordination Polymers with the Tetra(4-pyridyl)-tetrathiafulvalene Ligand. Crystal Growth and Design, 2019, 19, 3012-3018.	1.4	13
102	Magnetic, electrochemical and optical properties of a sulfate-bridged Co(<scp>ii</scp>) imidazole dimer. New Journal of Chemistry, 2014, 38, 5856-5860.	1.4	12
103	Synthesis, properties and surface self-assembly of a pentanuclear cluster based on the new Ï€-conjugated TTF-triazole ligand. Scientific Reports, 2016, 6, 25544.	1.6	12
104	Cyanide-bridged single molecule magnet based on a manganese(III) complex with TTF-fused Schiff base ligand. Science China Chemistry, 2015, 58, 650-657.	4.2	11
105	Untangling Complex Redox Chemistry in Zeolitic Imidazolate Frameworks Using Fourier Transformed Alternating Current Voltammetry. Analytical Chemistry, 2017, 89, 10181-10187.	3.2	11
106	Spectroscopic, electronic and computational properties of a mixed tetrachalcogenafulvalene and its charge transfer complex. Journal of Materials Chemistry C, 2018, 6, 1092-1104.	2.7	11
107	A porous Mn(v) coordination framework with PtS topology: assessment of the influence of a terminal nitride on CO2 sorption. Dalton Transactions, 2013, 42, 13308.	1.6	10
108	Dinuclear Ruthenium Complex Based on a π-Extended Bridging Ligand with Redox-Active Tetrathiafulvalene and 1,10-Phenanthroline Units. Inorganic Chemistry, 2016, 55, 4606-4615.	1.9	10

#	Article	IF	CITATIONS
109	Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py2TTF) ligand. Chemical Communications, 2020, 56, 10469-10472.	2.2	10
110	Spectroelectrochemical evidence for communication within a laterally-bridged dimanganese(iii) bis-porphyrin. Dalton Transactions, 2006, , 4805.	1.6	9
111	Redox-state investigation in a Co(II) framework with the redox-active tris(4-(pyridin-4-yl)phenyl)amine ligand. Supramolecular Chemistry, 2015, 27, 792-797.	1.5	9
112	A heterometallic ferrimagnet based on a new TTF-bis(oxamato) ligand. Dalton Transactions, 2017, 46, 3980-3988.	1.6	9
113	Redox state manipulation of a tris(p-tetrazolylphenyl)amine ligand and its Mn ²⁺ coordination frameworks. Dalton Transactions, 2017, 46, 2998-3007.	1.6	9
114	Interligand Charge-Transfer Interactions in Electroactive Coordination Frameworks Based on <i>N</i> , <i>N</i> , 3€2-Dicyanoquinonediimine (DCNQI). Inorganic Chemistry, 2018, 57, 9766-9774.	1.9	9
115	Visible Light Stimulated Bistable Photo-Switching in Defect Engineered Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 11706-11710.	1.9	9
116	Structurally photo-active metal–organic frameworks: Incorporation methods, response tuning, and potential applications. Chemical Physics Reviews, 2021, 2, .	2.6	9
117	A linear fluorescence-quenching response in an amidine-functionalised solid-state sensor for gas-phase and aqueous CO ₂ detection. Dalton Transactions, 2016, 45, 6824-6829.	1.6	8
118	Photoactive and Physical Properties of an Azobenzene-Containing Coordination Framework. Australian Journal of Chemistry, 2017, 70, 1171.	0.5	8
119	A Comparative Study of the Structural, Optical, and Electrochemical Properties of Squarate-Based Coordination Frameworks. Australian Journal of Chemistry, 2013, 66, 429.	0.5	7
120	Magnetic and Electronic Properties of Three New Hetero-Bimetallic Coordination Frameworks [Ru2(O2CR)4][Au(CN)2] (R = Benzoic Acid, Furan-2-carboxylate, or Thiophen-2-carboxylate). Australian Journal of Chemistry, 2014, 67, 1607.	0.5	7
121	Hydroquinone-Based Anion Receptors for Redox-Switchable Chloride Binding. Chemistry, 2019, 1, 80-88.	0.9	7
122	Chiral heterobimetallic chains from a dicyanideferrite building block including a π-conjugated TTF annulated ligand. Dalton Transactions, 2016, 45, 16575-16584.	1.6	6
123	Spectroelectrochemical properties of a Ru(<scp>ii</scp>) complex with a thiazolo[5,4-d]thiazole triarylamine ligand. New Journal of Chemistry, 2017, 41, 108-114.	1.4	6
124	Structures, Electrochemical and Spectral Properties of a Series of [MnN(CN)3(diimine)]-Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 2752-2757.	1.0	5
125	Multifunctional Coordination Polymer Exhibiting Reversible Mechanical Motion Allowing Selective Uptake of Guests and Leading to Enhanced Electrical Conductivity. Inorganic Chemistry, 2021, 60, 13658-13668.	1.9	5
126	Spectroelectrochemistry: A Powerful Tool for Studying Fundamental Properties and Emerging Applications of Solid-State Materials Including Metal–Organic Frameworks. Australian Journal of Chemistry, 2021, 74, 77.	0.5	5

#	Article	IF	CITATIONS
127	Multi-Redox Responsive Behavior in a Mixed-Valence Semiconducting Framework Based on Bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane. Journal of the American Chemical Society, 0, , .	6.6	5
128	Self-assembled Co(ii) molecular squares incorporating the bridging ligand 4,7-phenanthrolino-5,6:5′,6′-pyrazine. Dalton Transactions, 2011, 40, 12388.	1.6	4
129	Semi-conducting mixed-valent X ₄ TCNQ ^{lâ^'/llâ^'} (X = H, F) charge-transfer complexes with C ₆ H ₂ (NH ₂) ₄ . Journal of Materials Chemistry C, 2020, 8, 9422-9426.	2.7	4
130	Dinuclear acetylide-bridged ruthenium(<scp>ii</scp>) complexes with rigid non-aromatic spacers. Dalton Transactions, 2020, 49, 2687-2695.	1.6	4
131	Breathingâ€Assisted Selective Adsorption of C ₈ Alkyl Aromatics in Znâ€Based Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 14851-14857.	1.7	4
132	Chapter 7. Conducting Framework Materials. Monographs in Supramolecular Chemistry, 0, , 247-280.	0.2	4
133	Fluorescence Enhancement through Confined Oligomerization in Nanochannels: An Anthryl Oligomer in a Metal-Organic Framework. , 2021, 3, 1599-1604.		4
134	Driving the Localized-to-Delocalized Transition in Unsymmetrical Dinuclear Ruthenium Mixed-Valence Complexes. Australian Journal of Chemistry, 2005, 58, 767.	0.5	3
135	Carbon Dioxide Separation, Capture, and Storage in Porous Materials. Neutron Scattering Applications and Techniques, 2015, , 33-60.	0.2	3
136	Redox-State Dependent Spectroscopic Properties of Porous Organic Polymers Containing Furan, Thiophene, and Selenophene. Australian Journal of Chemistry, 2017, 70, 1227.	0.5	3
137	Electrochemical Switching of First-Generation Donor-Acceptor Stenhouse Adducts (DASAs): An Alternative Stimulus for Triene Cyclisation. Chemistry, 2021, 3, 728-733.	0.9	3
138	Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm, 0, , .	1.3	3
139	Solid-state anion interactions in the diastereoisomers of dinuclear ruthenium complexes based on 2,2′-bipyrimidine. Polyhedron, 2007, 26, 216-221.	1.0	2
140	Toward a dodecanuclear molecular Re(i) box: structural and spectroscopic properties. Dalton Transactions, 2019, 48, 7946-7952.	1.6	2
141	Electrochemical and spectroscopic properties of a cobalt framework with (3,7)-c topology. CrystEngComm, 2019, 21, 2381-2387.	1.3	2
142	Substituent effects on through-space intervalence charge transfer in cofacial metal–organic frameworks. Faraday Discussions, 2021, 231, 152-167.	1.6	2
143	In Situ Spectroelectrochemical Investigations of Rull Complexes with Bispyrazolyl Methane Triarylamine Ligands. Australian Journal of Chemistry, 2017, 70, 546.	0.5	1
144	A Semiconducting Cationic Squareâ€Grid Network with Fe III Centers Displaying Unusual Dynamic Behavior. European Journal of Inorganic Chemistry, 2020, 2020, 1255-1259.	1.0	1

#	Article	IF	CITATIONS
145	Tuneable CO ₂ binding enthalpies by redox modulation of an electroactive MOF-74 framework. Materials Advances, 2021, 2, 2112-2119.	2.6	1
146	Salen-Based Metal Complexes and the Physical Properties of their Porous Organic Polymers. Australian Journal of Chemistry, 2019, 72, 916.	0.5	1
147	Building a Porous Molecular Machine That Replicates Natural Enzymes. ACS Central Science, 2021, 7, 1605-1607.	5.3	1
148	Professor Richard Robson FAA. Australian Journal of Chemistry, 2019, 72, 729.	0.5	1
149	Molecular Electron Transfer. , 2021, , 376-392.		0
150	The electrochemical reduction of a flexible Mn(ii) salen-based metal–organic framework. Dalton Transactions, 2021, 50, 12821-12825.	1.6	0
151	Breathingâ€Assisted Selective Adsorption of C 8 Alkyl Aromatics in Znâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2021, 27, 14789-14789.	1.7	0
152	Metal–Organic Frameworks: Special Collection 2020. Chemistry - A European Journal, 2022, 28, e202200607.	1.7	0
153	Charge transfer in mixed and segregated stacks of tetrathiafulvalene, tetrathianaphthalene and naphthalene diimide: a structural, spectroscopic and computational study. New Journal of Chemistry,	1.4	ο