List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3112245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From the black hole conundrum to the structure of quantum gravity. Modern Physics Letters A, 2021, 36, 2130007.	0.5	8
2	Black hole interior in unitary gauge construction. Physical Review D, 2021, 103, .	1.6	15
3	Information paradox and its resolution in de Sitter holography. Physical Review D, 2021, 103, .	1.6	78
4	Multiverse in an inverted island. Physical Review D, 2021, 104, .	1.6	18
5	Interior of a unitarily evaporating black hole. Physical Review D, 2020, 102, .	1.6	16
6	Coarse-graining holographic states: A semiclassical flow in general spacetimes. Physical Review D, 2020, 102, .	1.6	16
7	Ensemble from coarse graining: Reconstructing the interior of an evaporating black hole. Physical Review D, 2020, 102, .	1.6	23
8	Spacetime and universal soft modes: Black holes and beyond. Physical Review D, 2020, 101, .	1.6	27
9	Comments on holographic entanglement entropy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi>T deformed conformal field theories. Physical Review D. 2019. 100</mml:math 	1.6	25
10	Reanalyzing an evaporating black hole. Physical Review D, 2019, 99, .	1.6	21
11	Outer entropy and quasilocal energy. Physical Review D, 2019, 99, .	1.6	7
12	Pure natural inflation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 776, 227-230.	1.5	31
13	Tensor modes in pure natural inflation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 780, 106-110.	1.5	8
14	Classical spacetimes as amplified information in holographic quantum theories. Physical Review D, 2018, 97, .	1.6	5
15	Pulling the boundary into the bulk. Physical Review D, 2018, 98, .	1.6	29
16	Area law unification and the holographic event horizon. Journal of High Energy Physics, 2018, 2018, 1.	1.6	12
17	Spacetime from unentanglement. Physical Review D, 2018, 97, .	1.6	27
18	Chiral Dark Sector. Physical Review Letters, 2017, 118, 101801.	2.9	20

#	Article	IF	CITATIONS
19	Toward a holographic theory for general spacetimes. Physical Review D, 2017, 95, .	1.6	31
20	Butterfly velocities for holographic theories of general spacetimes. Journal of High Energy Physics, 2017, 2017, 1.	1.6	3
21	Hidden pion varieties in composite models for diphoton resonances. Physical Review D, 2016, 94, .	1.6	3
22	Spacetime equals entanglement. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 763, 370-374.	1.5	14
23	750 GeV diphotons: implications for supersymmetric unification. Journal of High Energy Physics, 2016, 2016, 1.	1.6	43
24	Why firewalls need not exist. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 761, 62-69.	1.5	8
25	Flat-space quantum gravity in theAdS/CFTcorrespondence. Physical Review D, 2016, 93, .	1.6	1
26	Axion Isocurvature and Magnetic Monopoles. Physical Review Letters, 2016, 116, 141803.	2.9	36
27	Light chiral dark sector. Physical Review D, 2016, 94, .	1.6	18
28	750 GeV diphotons: implications for supersymmetric unification II. Journal of High Energy Physics, 2016, 2016, 1.	1.6	10
29	A composite model for the 750 GeV diphoton excess. Journal of High Energy Physics, 2016, 2016, 1.	1.6	23
30	Composite models for the 750 GeV diphoton excess. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 754, 151-156.	1.5	145
31	Weak gravity conjecture in the AdS/CFT correspondence. Physical Review D, 2015, 92, .	1.6	48
32	Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions. Journal of High Energy Physics, 2015, 2015, 1.	1.6	9
33	A note on Boltzmann brains. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 749, 514-518.	1.5	6
34	Black Hole Interior in Quantum Gravity. Physical Review Letters, 2015, 114, 201301.	2.9	22
35	Black holes, entropies, and semiclassical spacetime in quantum gravity. Journal of High Energy Physics, 2014, 2014, 1.	1.6	7
36	Entropy of a vacuum: What does the covariant entropy count?. Physical Review D, 2014, 90, .	1.6	14

#	Article	IF	CITATIONS
37	Supersymmetry from Typicality: TeV-Scale Gauginos and PeV-Scale Squarks and Sleptons. Physical Review Letters, 2014, 113, 111801.	2.9	23
38	Grand unification and intermediate scale supersymmetry. Journal of High Energy Physics, 2014, 2014, 1.	1.6	23
39	Grand unification, axion, and inflation in Intermediate Scale Supersymmetry. Journal of High Energy Physics, 2014, 2014, 1.	1.6	29
40	Low energy description of quantum gravity and complementarity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 733, 126-133.	1.5	14
41	Inflationary paradigm after Planck 2013. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 733, 112-119.	1.5	142
42	A note on (no) firewalls: the entropy argument. Journal of High Energy Physics, 2013, 2013, 1.	1.6	27
43	Complementarity endures: no firewall for an infalling observer. Journal of High Energy Physics, 2013, 2013, 1.	1.6	55
44	Quantum Mechanics, Spacetime Locality, and Gravity. Foundations of Physics, 2013, 43, 978-1007.	0.6	31
45	Spread Supersymmetry with \$ widetilde{W} \$ LSP: gluino and dark matter signals. Journal of High Energy Physics, 2013, 2013, 1.	1.6	109
46	Black holes, information, and Hilbert space for quantum gravity. Physical Review D, 2013, 87, .	1.6	40
47	Black holes or firewalls: A theory of horizons. Physical Review D, 2013, 88, .	1.6	16
48	What can the observation of nonzero curvature tell us?. Physical Review D, 2012, 86, .	1.6	51
49	Compact supersymmetry. Physical Review D, 2012, 86, .	1.6	22
50	Higgs descendants. Physical Review D, 2012, 86, .	1.6	7
51	Static quantum multiverse. Physical Review D, 2012, 86, .	1.6	13
52	Quantum Mechanics, Gravity, and the Multiverse. The Astronomical Review, 2012, 7, 36-52.	4.0	6
53	Supersymmetry with light stops. Journal of High Energy Physics, 2012, 2012, 1.	1.6	39
54	Spread Supersymmetry. Journal of High Energy Physics, 2012, 2012, 1.	1.6	137

#	Article	IF	CITATIONS
55	Cosmological constant in the quantum multiverse. Physical Review D, 2011, 84, .	1.6	13
56	Physical theories, eternal inflation, and the quantum universe. Journal of High Energy Physics, 2011, 2011, 1.	1.6	68
57	Goldstini. Journal of High Energy Physics, 2010, 2010, 1.	1.6	72
58	A finely-predicted Higgs boson mass from a finely-tuned weak scale. Journal of High Energy Physics, 2010, 2010, 1.	1.6	91
59	A definitive signal of multiple supersymmetry breaking. Journal of High Energy Physics, 2010, 2010, 1.	1.6	27
60	Singlet portal to the hidden sector. Journal of High Energy Physics, 2010, 2010, 1.	1.6	7
61	Environmentally selected WIMP dark matter with high-scale supersymmetry breaking. Physical Review D, 2010, 81, .	1.6	6
62	New Approach to theμâ~'BμProblem of Gauge-Mediated Supersymmetry Breaking. Physical Review Letters, 2009, 102, 111801.	2.9	48
63	Cosmic signals from the hidden sector. Physical Review D, 2009, 80, .	1.6	60
64	Dark matter signals from cascade annihilations. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 016-016.	1.9	97
65	Dark matter through the axion portal. Physical Review D, 2009, 79, .	1.6	153
66	Multiverse understanding of cosmological coincidences. Physical Review D, 2009, 80, .	1.6	29
67	A simple and realistic model of supersymmetry breaking. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 661, 145-153.	1.5	10
68	Flavorful supersymmetry. Physical Review D, 2008, 77, .	1.6	29
69	Naturally flavorful supersymmetry at the LHC. Physical Review D, 2008, 78, .	1.6	9
70	More visible effects of the hidden sector. Physical Review D, 2008, 77, .	1.6	52
71	Evidence for the multiverse in the standard model and beyond. Physical Review D, 2008, 78, .	1.6	43
72	Flavorful supersymmetry from higher dimensions. Journal of High Energy Physics, 2008, 2008, 055-055.	1.6	29

#	Article	IF	CITATIONS
73	Gauge Mediation Simplified. Physical Review Letters, 2007, 98, 151803.	2.9	100
74	Simple scheme for gauge mediation. Physical Review D, 2007, 75, .	1.6	54
75	Supersymmetry without the desert. Physical Review D, 2007, 75, .	1.6	4
76	Supersymmetry without a light Higgs boson. Physical Review D, 2007, 75, .	1.6	90
77	Predictive supersymmetry from criticality. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 648, 213-223.	1.5	3
78	Minimally fine-tuned supersymmetric standard models with intermediate-scale supersymmetry breaking. Nuclear Physics B, 2006, 745, 29-48.	0.9	28
79	Dark matter before the LHC in a natural supersymmetric standard model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 632, 162-166.	1.5	16
80	μB-driven electroweak symmetry breaking. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 633, 573-582.	1.5	13
81	Natural little hierarchy from a partially goldstone twin Higgs. Journal of High Energy Physics, 2006, 2006, 126-126.	1.6	136
82	Holographic grand unification. Journal of High Energy Physics, 2006, 2006, 002-002.	1.6	17
83	Supersymmetry, naturalness, and signatures at the CERN LHC. Physical Review D, 2006, 73, .	1.6	182
84	A solution to the supersymmetric fine-tuning problem within the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 631, 58-67.	1.5	200
85	Supersymmetric fine-tuning problem and TeV-scale exotic scalars. Physical Review D, 2005, 72, .	1.6	23
86	Warped supersymmetric unification with a nonunified superparticle spectrum. Physical Review D, 2005, 71, .	1.6	13
87	Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson. Physical Review D, 2005, 71, .	1.6	40
88	A minimally fine-tuned supersymmetric standard model. Nuclear Physics B, 2005, 725, 207-250.	0.9	42
89	Evolving Dark Energy withwâ‰â^'1. Physical Review Letters, 2005, 95, 141302.	2.9	29
90	Acceleressence: dark energy from a phase transition at the seesaw scale. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 011-011.	1.9	20

#	Article	IF	CITATIONS
91	Holographic theories of electroweak symmetry breaking without a Higgs boson. Physical Review D, 2004, 69, .	1.6	77
92	Explicit supersymmetry breaking on boundaries of warped extra dimensions. Nuclear Physics B, 2004, 677, 87-114.	0.9	21
93	Matter unification in warped supersymmetric. Nuclear Physics B, 2004, 698, 92-110.	0.9	13
94	and unified theories on an elongated rectangle. Nuclear Physics B, 2004, 703, 217-235.	0.9	10
95	Grand unification in higher dimensions. Annals of Physics, 2003, 306, 132-156.	1.0	35
96	Higgs as a holographic pseudo-Goldstone boson. Nuclear Physics B, 2003, 671, 148-174.	0.9	497
97	Unification of Higgs and gauge fields in five dimensions. Nuclear Physics B, 2003, 656, 3-22.	0.9	180
98	Radiative electroweak symmetry breaking from a quasi-localized top quark. Nuclear Physics B, 2003, 663, 141-162.	0.9	31
99	Gauge mediation models with neutralino dark matter. Physical Review D, 2003, 68, .	1.6	8
100	Warped supersymmetric grand unification. Physical Review D, 2003, 67, .	1.6	67
101	Spectrum of TeV particles in warped supersymmetric grand unification. Physical Review D, 2003, 68, .	1.6	24
102	Higgsless theory of electroweak symmetry breaking from warped space. Journal of High Energy Physics, 2003, 2003, 050-050.	1.6	113
103	Complete theory of grand unification in five dimensions. Physical Review D, 2002, 66, .	1.6	92
104	Gauge coupling unification from unified theories in higher dimensions. Physical Review D, 2002, 65, .	1.6	103
105	Softly broken supersymmetric desert from orbifold compactification. Physical Review D, 2002, 66, .	1.6	58
106	Strongly coupled grand unification in higher dimensions. Physical Review D, 2002, 65, .	1.6	58
107	SO(10) unified theories in six dimensions. Physical Review D, 2002, 65, .	1.6	129
108	Models of Scherk–Schwarz symmetry breaking in 5d: classification and calculability. Nuclear Physics B, 2002, 624, 63-80.	0.9	83

#	Article	IF	CITATIONS
109	Gauge-Higgs unification in higher dimensions. Nuclear Physics B, 2002, 639, 307-330.	0.9	131
110	Wilson lines and symmetry breaking on orbifolds. Nuclear Physics B, 2002, 645, 85-104.	0.9	73
111	Unification of weak and hypercharge interactions at the TeV scale. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 532, 111-120.	1.5	21
112	R symmetry and the μ problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 538, 359-365.	1.5	38
113	Finite radiative electroweak symmetry breaking from the bulk. Nuclear Physics B, 2001, 605, 81-115.	0.9	94
114	GUT breaking on the brane. Nuclear Physics B, 2001, 613, 147-166.	0.9	80
115	Viable ultraviolet-insensitive supersymmetry breaking. Journal of High Energy Physics, 2001, 2001, 041-041.	1.6	80
116	Constrained standard model from a compact extra dimension. Physical Review D, 2001, 63, .	1.6	177
117	Gauge unification in higher dimensions. Physical Review D, 2001, 64, .	1.6	369
118	Low-scale seesaw mechanisms for light neutrinos. Physical Review D, 2001, 64, .	1.6	87
119	Quintessence axion potential induced by electroweak instanton effects. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 484, 103-111.	1.5	64
120	Bulk U(1) messenger. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 487, 140-144.	1.5	7
121	Quark and lepton mass matrices in the SO(10) grand unified theory with generation flipping. Physical Review D, 2000, 61, .	1.6	10
122	Mass generation for an ultralight axion. Physical Review D, 2000, 61, .	1.6	8
123	Natural effective supersymmetry. Nuclear Physics B, 2000, 584, 3-45.	0.9	50
124	Long-lived superheavy particles in dynamical supersymmetry-breaking models in supergravity. Physical Review D, 1999, 60, .	1.6	28
125	Relation on gaugino masses in a supersymmetricSO(10)GUT×SO(6)Hunified model. Physical Review D, 1999, 60, .	1.6	2
126	Grand-unification scale generation through anomalous U(1) breaking. Physical Review D, 1999, 60, .	1.6	17

#	Article	IF	CITATIONS
127	Long lived superheavy dark matter with discrete gauge symmetries. Physical Review D, 1999, 59, .	1.6	31
128	Large squark and slepton masses for the first-two generations in the anomalous U(1) SUSY breaking models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 445, 316-322.	1.5	36
129	Gauge-mediation model of dynamical SUSY breaking with a wide range of the gravitino mass. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 452, 274-278.	1.5	10
130	Cosmological Constants as Messenger between Branes. Progress of Theoretical Physics, 1999, 102, 1181-1185.	2.0	13
131	A gauge mediation model of dynamical supersymmetry breaking without color instability. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 425, 107-113.	1.5	17
132	Superheavy dark matter with discrete gauge symmetries. Physical Review D, 1998, 58, .	1.6	44
133	Bimaximal neutrino mixing in SO(10)GUT. Physical Review D, 1998, 59, .	1.6	99
134	Phenomenological aspects of a direct-transmission model of dynamical supersymmetry breaking with the gravitino massm3/2<1â€,keV. Physical Review D, 1998, 58, .	1.6	25
135	Direct-transmission models of dynamical supersymmetry breaking. Physical Review D, 1997, 56, 2886-2892.	1.6	119