Inmaculada Aranaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3111679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 2009, 3, 203-230.	0.2	679
2	Chitosan: An Overview of Its Properties and Applications. Polymers, 2021, 13, 3256.	2.0	373
3	Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers, 2018, 10, 213.	2.0	255
4	Chitosan Amphiphilic Derivatives. Chemistry and Applications. Current Organic Chemistry, 2010, 14, 308-330.	0.9	245
5	Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 2009, 3, 203-230.	0.2	207
6	Short-Chain Chitin Oligomers: Promoters of Plant Growth. Marine Drugs, 2017, 15, 40.	2.2	72
7	Chitosan Gelation Induced by the in Situ Formation of Gold Nanoparticles and Its Processing into Macroporous Scaffolds. Biomacromolecules, 2011, 12, 179-186.	2.6	61
8	Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and pH-Responsive Chitosan Hydrogels. Macromolecular Bioscience, 2003, 3, 612-619.	2.1	59
9	Controlled size green synthesis of bioactive silver nanoparticles assisted by chitosan and its derivatives and their application in biofilm preparation. Carbohydrate Polymers, 2020, 236, 116063.	5.1	58
10	Preparation of Chitosan Nanocompositeswith a Macroporous Structure by Unidirectional Freezing and Subsequent Freeze-Drying. Marine Drugs, 2014, 12, 5619-5642.	2.2	55
11	Improvement of Porous β-TCP Scaffolds with rhBMP-2 Chitosan Carrier Film for Bone Tissue Application. Tissue Engineering - Part A, 2008, 14, 1305-1319.	1.6	50
12	Chitosan based films as supports for dual antimicrobial release. Carbohydrate Polymers, 2016, 146, 402-410.	5.1	43
13	Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules, 2017, 22, 1980.	1.7	43
14	Tramadol Release from a Delivery System Based on Alginate-Chitosan Microcapsules. Macromolecular Bioscience, 2003, 3, 546-551.	2.1	36
15	Chitosan derivatives-based films as pH-sensitive drug delivery systems with enhanced antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 2021, 182, 730-742.	3.6	36
16	Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds. Journal of Materials Chemistry, 2008, 18, 5933.	6.7	35
17	Pseudo-double network hydrogels with unique properties as supports for cell manipulation. Journal of Materials Chemistry B, 2014, 2, 3839-3848.	2.9	32
18	Dextran Aldehyde in Biocatalysis: More Than a Mere Immobilization System. Catalysts, 2019, 9, 622.	1.6	32

INMACULADA ARANAZ

#	Article	IF	CITATIONS
19	Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan. International Journal of Biological Macromolecules, 2019, 139, 558-569.	3.6	30
20	Role of Physicochemical Properties of Chitin and Chitosan on their Functionality. Current Chemical Biology, 2014, 8, 27-42.	0.2	28
21	pH―and Temperature‧ensitive Chitosan Hydrogels: Swelling and MRI Studies. Macromolecular Chemistry and Physics, 2011, 212, 887-895.	1.1	26
22	Synthesis, physicochemical characterization and biological evaluation of chitosan sulfate as heparan sulfate mimics. Carbohydrate Polymers, 2018, 191, 225-233.	5.1	26
23	Encapsulation of an Agrobacterium radiobacter extract containing d-hydantoinase and d-carbamoylase activities into alginate–chitosan polyelectrolyte complexes. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 54-64.	1.8	24
24	Enzymatic production of low-Mw chitosan-derivatives: Characterization and biological activities evaluation. International Journal of Biological Macromolecules, 2020, 144, 279-288.	3.6	24
25	Co-immobilization ofd-hydantoinase andd-carboamylase on Chitin: Application to the Synthesis of p-hydroxyphenylglycine. Biocatalysis and Biotransformation, 2003, 21, 349-356.	1.1	22
26	Surface hierarchical porosity in poly (É>caprolactone) membranes with potential applications in tissue engineering prepared by foaming in supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 95, 273-284.	1.6	18
27	Efficient reduction of Toluidine Blue O dye using silver nanoparticles synthesized by low molecular weight chitosans. International Journal of Biological Macromolecules, 2019, 131, 682-690.	3.6	17
28	Controlled formation of the anhydrous polymorph of ciprofloxacin crystals embedded within chitosan scaffolds: study of the kinetic release dependence on crystal size. Journal of Materials Chemistry, 2009, 19, 1576.	6.7	16
29	Singular thermosensitivity of polymethyl methacrylate/poly-N-isopropylacrylamide conetworks prepared by a facile synthetic route. Polymer Chemistry, 2011, 2, 709-713.	1.9	13
30	Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying. Materials, 2017, 10, 516.	1.3	13
31	Ionic Conductivity, Diffusion Coefficients, and Degree of Dissociation in Lithium Electrolytes, Ionic Liquids, and Hydrogel Polyelectrolytes. Journal of Physical Chemistry B, 2018, 122, 8301-8308.	1.2	13
32	Optimization of d-amino acid production catalyzed by immobilized multi-enzyme system in polyelectrolyte complex gel capsules. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 45-52.	1.8	11
33	Green Synthesis of Hierarchically Structured Silver-Polymer Nanocomposites with Antibacterial Activity. Nanomaterials, 2016, 6, 137.	1.9	11
34	Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films. AAPS PharmSciTech, 2017, 18, 974-982.	1.5	11
35	Synthesis of p-hydroxyphenylglicine by cell extract from Agrobaterium radiobacter encapsulated in alginate capsules. Enzyme and Microbial Technology, 2006, 39, 215-221.	1.6	10
36	On the Ability of Low Molecular Weight Chitosan Enzymatically Depolymerized to Produce and Stabilize Silver Nanoparticles. Biomimetics, 2018, 3, 21.	1.5	9

INMACULADA ARANAZ

#	Article	IF	CITATIONS
37	Enzymatic d-p-hydrophenyl glycine synthesis using chitin and chitosan as supports for biocatalyst immobilization. Biocatalysis and Biotransformation, 2018, 36, 89-101.	1.1	8
38	Compositionally-tunable surface nanostructuration of microspheres obtained from a self-stabilizing copolymerization of methylmethacrylate and vinylpyrrolidone. Polymer, 2011, 52, 2991-2997.	1.8	7
39	Evaluating Non-Conventional Chitosan Sources for Controlled Release of Risperidone. Polymers, 2022, 14, 1355.	2.0	6
40	Unraveling the Structural Landscape of Chitosan-Based Heparan Sulfate Mimics Binding to Growth Factors: Deciphering Structural Determinants for Optimal Activity. ACS Applied Materials & Interfaces, 2020, 12, 25534-25545.	4.0	5
41	Self-Structuring in Amphiphilic Networks Prepared by Single Conventional Radical Copolymerization of n-Butyl Methacrylate and Vinylpyrrolidone. Macromolecules, 2013, 46, 5018-5025.	2.2	4
42	Physicochemical and biological properties of chitosan derivatives with varying molecular weight produced by chemical depolymerization. Biomass Conversion and Biorefinery, 2024, 14, 4111-4121.	2.9	2
43	Reply to "Comment on â€~lonic Conductivity, Diffusion Coefficients and Degree of Dissociation in Lithium Electrolytes, Ionic Liquids and Hydrogel Polyelectrolytes'― Journal of Physical Chemistry B, 2018, 122, 10968-10969.	1.2	1
44	Chemical Guiding of Magnetic Nanoparticles in Dispersed Media Containing Poly-(methylmethacrylate- <i>co</i> -vinylpyrrolidone). Langmuir, 2012, 28, 5555-5561.	1.6	0
45	Chitin- and Chitosan-Based Composite Materials. Biomimetics, 2022, 7, 1.	1.5	0