Jeremy Luban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/311155/publications.pdf

Version: 2024-02-01

23173 22548 116 14,851 144 61 citations h-index g-index papers 167 167 167 17369 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. ELife, 2022, 11, .	2.8	37
2	Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. ELife, 2022, 11, .	2.8	45
3	Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science, 2022, 376, 1327-1332.	6.0	172
4	Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells., 2022, 1, 271-284.		5
5	The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus Research, 2021, 292, 198246.	1.1	53
6	Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science, 2021, 371, .	6.0	226
7	Influence of Different Glycoproteins and of the Virion Core on SERINC5 Antiviral Activity. Viruses, 2021, 13, 1279.	1.5	16
8	Lessons from a local effort to screen for SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2108044118.	3.3	1
9	Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Microscopy and Microanalysis, 2021, 27, 3260-3262.	0.2	3
10	AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. Journal of Experimental Medicine, $2021, 218, \ldots$	4.2	34
11	SARS-CoV-2 Reinfection in a Liver Transplant Recipient. Annals of Internal Medicine, 2021, 174, 1178-1180.	2.0	10
12	Genome-wide functional screen of 3′UTR variants uncovers causal variants for human disease and evolution. Cell, 2021, 184, 5247-5260.e19.	13.5	62
13	Targeting of the Tec Kinase ITK Drives Resolution of T Cell–Mediated Colitis and Emerges as Potential Therapeutic Option in Ulcerative Colitis. Gastroenterology, 2021, 161, 1270-1287.e19.	0.6	9
14	Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 2020, 183, 739-751.e8.	13.5	924
15	Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Reports, 2020, 32, 107998.	2.9	60
16	HIV-1-induced cytokines deplete homeostatic innate lymphoid cells and expand TCF7-dependent memory NK cells. Nature Immunology, 2020, 21, 274-286.	7.0	60
17	Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLoS Biology, 2020, 18, e3000626.	2.6	59
18	Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses, 2020, 12, 105.	1.5	9

#	Article	IF	CITATIONS
19	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5î±-dependent manner. PLoS Pathogens, 2020, 16, e1008507.	2.1	39
20	Real-Time Analysis of Individual Ebola Virus Glycoproteins Reveals Pre-Fusion, Entry-Relevant Conformational Dynamics. Viruses, 2020, 12, 103.	1.5	16
21	Title is missing!. , 2020, 18, e3000626.		O
22	Title is missing!. , 2020, 18, e3000626.		0
23	Title is missing!. , 2020, 18, e3000626.		O
24	Title is missing!. , 2020, 18, e3000626.		0
25	Title is missing!. , 2020, 18, e3000626.		O
26	Title is missing!. , 2020, 18, e3000626.		0
27	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner., 2020, 16, e1008507.		0
28	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner., 2020, 16, e1008507.		0
29	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. , 2020, 16, e1008507.		0
30	Cyclophilin A protects HIV-1 from restriction by human TRIM5α. Nature Microbiology, 2019, 4, 2044-2051.	5.9	97
31	The piRNA Response to Retroviral Invasion of the Koala Genome. Cell, 2019, 179, 632-643.e12.	13.5	73
32	The hidden cost of genetic resistance to HIV-1. Nature Medicine, 2019, 25, 878-879.	15.2	3
33	TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Reports, 2019, 27, 3269-3283.e6.	2.9	53
34	Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Research, 2019, 47, 4169-4180.	6.5	85
35	Constrained Mutational Sampling of Amino Acids in HIV-1 Protease Evolution. Molecular Biology and Evolution, 2019, 36, 798-810.	3.5	10
36	Human Anti–HIV-1 gp120 Monoclonal Antibodies with Neutralizing Activity Cloned from Humanized Mice Infected with HIV-1. Journal of Immunology, 2019, 202, 799-804.	0.4	5

#	Article	IF	CITATIONS
37	Comparative Analysis of Immune Cells Reveals a Conserved Regulatory Lexicon. Cell Systems, 2018, 6, 381-394.e7.	2.9	19
38	The Three-Fold Axis of the HIV-1 Capsid Lattice Is the Species-Specific Binding Interface for TRIM5 \hat{l}_{\pm} . Journal of Virology, 2018, 92, .	1.5	22
39	HIV-1 R5 Macrophage-Tropic Envelope Glycoprotein Trimers Bind CD4 with High Affinity, while the CD4 Binding Site on Non-macrophage-tropic, T-Tropic R5 Envelopes Is Occluded. Journal of Virology, 2018, 92, .	1.5	14
40	Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines. Nature Communications, 2018, 9, 5305.	5.8	47
41	Primate immunodeficiency virus proteins Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex. Nature Microbiology, 2018, 3, 1354-1361.	5.9	95
42	Cyclophilin A and HIV-1 Replication. , 2018, , 421-425.		0
43	Optimization by infusion of multiple reaction monitoring transitions for sensitive quantification of peptides by liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 753-761.	0.7	8
44	End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data. Genome Research, 2016, 26, 1397-1410.	2.4	63
45	Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic. Cell, 2016, 167, 1088-1098.e6.	13.5	173
46	HIV-1 capsid is involved in post-nuclear entry steps. Retrovirology, 2016, 13, 28.	0.9	53
47	TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling. Journal of Virology, 2016, 90, 308-316.	1.5	44
48	Closing the net on retroviruses. ELife, 2016, 5, .	2.8	1
49	Lv4 Is a Capsid-Specific Antiviral Activity in Human Blood Cells That Restricts Viruses of the SIVMAC/SIVSM/HIV-2 Lineage Prior to Integration. PLoS Pathogens, 2015, 11, e1005050.	2.1	25
50	Processing strategies and software solutions for dataâ€independent acquisition in mass spectrometry. Proteomics, 2015, 15, 964-980.	1.3	143
51	Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomic studies. Analytical Biochemistry, 2015, 484, 40-50.	1.1	16
52	Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC–MS/MS. Journal of Proteome Research, 2015, 14, 4581-4593.	1.8	19
53	HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature, 2015, 526, 212-217.	13.7	376
54	The Use of Variable Q1 Isolation Windows Improves Selectivity in LC–SWATH–MS Acquisition. Journal of Proteome Research, 2015, 14, 4359-4371.	1.8	151

#	Article	IF	CITATIONS
55	Gammaretroviral pol sequences act in cis to direct polysome loading and NXF1/NXT-dependent protein production by gag-encoded RNA. Retrovirology, 2014, 11, 73.	0.9	13
56	Vpx rescue of HIV-1 from the antiviral state in mature dendritic cells is independent of the intracellular deoxynucleotide concentration. Retrovirology, 2014, 11, 12.	0.9	42
57	Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology, 2014, 11, 11.	0.9	93
58	The Fate of HIV-1 Capsid: A Biochemical Assay for HIV-1 Uncoating. Methods in Molecular Biology, 2014, 1087, 29-36.	0.4	51
59	TRIM5 \hat{l}_{\pm} and TRIM22 Are Differentially Regulated According to HIV-1 Infection Phase and Compartment. Journal of Virology, 2014, 88, 4291-4303.	1.5	21
60	Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay. Retrovirology, 2013, 10, 70.	0.9	73
61	TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology, 2013, 10, 20.	0.9	129
62	TRIM Protein-Mediated Regulation of Inflammatory and Innate Immune Signaling and Its Association with Antiretroviral Activity. Journal of Virology, 2013, 87, 257-272.	1.5	189
63	Cyclophilin A and HIV-1 Replication. , 2013, , 1-6.		0
64	More than one way to TRIM a capsid. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19517-19518.	3.3	2
65	TRIM5 and the Regulation of HIV-1 Infectivity. Molecular Biology International, 2012, 2012, 1-6.	1.7	16
66	Innate Immune Sensing of HIV-1 by Dendritic Cells. Cell Host and Microbe, 2012, 12, 408-418.	5.1	66
67	TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Current Opinion in Virology, 2012, 2, 142-150.	2.6	96
68	HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology, 2012, 9, 111.	0.9	188
69	The Carboxyl-Terminus of Human Immunodeficiency Virus Type 2 Circulating Recombinant form 01_AB Capsid Protein Affects Sensitivity to Human TRIM51±. PLoS ONE, 2012, 7, e47757.	1.1	8
70	TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature, 2011, 472, 361-365.	13.7	569
71	TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions. Retrovirology, 2011, 8, 93.	0.9	42
72	Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon. Retrovirology, 2011, 8, 49.	0.9	63

#	Article	IF	Citations
73	Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus. Retrovirology, 2011, 8, 98.	0.9	92
74	TRIM22 Inhibits HIV-1 Transcription Independently of Its E3 Ubiquitin Ligase Activity, Tat, and NF-κB-Responsive Long Terminal Repeat Elements. Journal of Virology, 2011, 85, 5183-5196.	1.5	87
75	Association of TRIM22 with the Type 1 Interferon Response and Viral Control during Primary HIV-1 Infection. Journal of Virology, 2011, 85, 208-216.	1.5	66
76	Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41. PLoS Pathogens, 2011, 7, e1002442.	2.1	39
77	Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney. PLoS ONE, 2010, 5, e13930.	1.1	13
78	p62/Sequestosome-1 Associates with and Sustains the Expression of Retroviral Restriction Factor TRIM51±. Journal of Virology, 2010, 84, 5997-6006.	1.5	51
79	Cyclosporine Blocks Incorporation of HIV-1 Envelope Glycoprotein into Virions. Journal of Virology, 2010, 84, 4851-4855.	1.5	12
80	Deciphering the Code for Retroviral Integration Target Site Selection. PLoS Computational Biology, 2010, 6, e1001008.	1.5	41
81	Cyclosporine A-Sensitive, Cyclophilin B-Dependent Endoplasmic Reticulum-Associated Degradation. PLoS ONE, 2010, 5, e13008.	1.1	45
82	The Double-stranded RNA Binding Domain of the Vaccinia Virus E3L Protein Inhibits Both RNA- and DNA-induced Activation of Interferon \hat{I}^2 . Journal of Biological Chemistry, 2009, 284, 25471-25478.	1.6	30
83	An Invariant Surface Patch on the TRIM5α PRYSPRY Domain Is Required for Retroviral Restriction but Dispensable for Capsid Binding. Journal of Virology, 2009, 83, 3365-3373.	1.5	25
84	Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17019-17024.	3.3	74
85	Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics. PLoS Pathogens, 2009, 5, e1000546.	2.1	233
86	HIV-1 Vpu Neutralizes the Antiviral Factor Tetherin/BST-2 by Binding It and Directing Its Beta-TrCP2-Dependent Degradation. PLoS Pathogens, 2009, 5, e1000574.	2.1	248
87	Human cellular restriction factors that target HIV-1 replication. BMC Medicine, 2009, 7, 48.	2.3	120
88	Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. Journal of Clinical Investigation, 2009, 119, 3035-3047.	3.9	112
89	Lentiviral Vector Gene Transfer Is Limited by the Proteasome at Postentry Steps in Various Types of Stem Cells. Stem Cells, 2008, 26, 2142-2152.	1.4	51
90	HIV-1 Infection: Going Nuclear with TNPO3/Transportin-SR2 and Integrase. Current Biology, 2008, 18, R710-R713.	1.8	23

#	Article	IF	Citations
91	Characterization of Simian Immunodeficiency Virus SIV _{SM} /Human Immunodeficiency Virus Type 2 Vpx Function in Human Myeloid Cells. Journal of Virology, 2008, 82, 12335-12345.	1.5	120
92	A Dual Task for the Xbp1-responsive OS-9 Variants in the Mammalian Endoplasmic Reticulum. Journal of Biological Chemistry, 2008, 283, 16446-16454.	1.6	107
93	Vif Counteracts a Cyclophilin A-Imposed Inhibition of Simian Immunodeficiency Viruses in Human Cells. Journal of Virology, 2007, 81, 8080-8090.	1.5	15
94	Cyclophilin A, TRIM5, and Resistance to Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2007, 81, 1054-1061.	1.5	136
95	Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. Journal of Experimental Medicine, 2007, 204, 1741-1748.	4.2	197
96	The role of lysine 186 in HIV-1 integrase multimerization. Virology, 2007, 364, 227-236.	1.1	30
97	The retroviral restriction factor TRIM51±. Current Infectious Disease Reports, 2007, 9, 167-173.	1.3	12
98	Cyclophilin, TRIM5, and innate immunity to HIV-1. Current Opinion in Microbiology, 2006, 9, 404-408.	2.3	79
99	Arsenic Counteracts Human Immunodeficiency Virus Type 1 Restriction by Various TRIM5 Orthologues in a Cell Type-Dependent Manner. Journal of Virology, 2006, 80, 2051-2054.	1.5	32
100	Cyclophilin A and TRIM5 \hat{i} ± Independently Regulate Human Immunodeficiency Virus Type 1 Infectivity in Human Cells. Journal of Virology, 2006, 80, 2855-2862.	1.5	97
101	G2 Cell Cycle Arrest and Cyclophilin A in Lentiviral Gene Transfer. Molecular Therapy, 2006, 14, 546-554.	3.7	8
102	Covalent Modification of Human Immunodeficiency Virus Type 1 p6 by SUMO-1. Journal of Virology, 2005, 79, 910-917.	1.5	71
103	ATPÎ ³ S Disrupts Human Immunodeficiency Virus Type 1 Virion Core Integrity. Journal of Virology, 2005, 79, 5557-5567.	1.5	29
104	Disruption of Human TRIM5α Antiviral Activity by Nonhuman Primate Orthologues. Journal of Virology, 2005, 79, 7883-7888.	1.5	52
105	Cyclophilin A-Deficient Mice Are Resistant to Immunosuppression by Cyclosporine. Journal of Immunology, 2005, 174, 6030-6038.	0.4	102
106	Cyclophilin A is required for TRIM5Â-mediated resistance to HIV-1 in Old World monkey cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14849-14853.	3.3	142
107	TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology, 2005, 2, 40.	0.9	212
108	TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. Journal of Clinical Investigation, 2005, 115, 2904-2913.	3.9	305

#	Article	IF	Citations
109	Lv1 Inhibition of Human Immunodeficiency Virus Type 1 Is Counteracted by Factors That Stimulate Synthesis or Nuclear Translocation of Viral cDNA. Journal of Virology, 2004, 78, 11739-11750.	1.5	7 5
110	HIV-1 Vpr Induces Defects in Mitosis, Cytokinesis, Nuclear Structure, and Centrosomes. Molecular Biology of the Cell, 2004, 15, 1793-1801.	0.9	47
111	Target Cell Cyclophilin A Modulates Human Immunodeficiency Virus Type 1 Infectivity. Journal of Virology, 2004, 78, 12800-12808.	1.5	209
112	Selection for Loss of Ref1 Activity in Human Cells Releases Human Immunodeficiency Virus Type 1 from Cyclophilin A Dependence during Infection. Journal of Virology, 2004, 78, 12066-12070.	1.5	39
113	Blockade of Late Stages of Autoimmune Diabetes by Inhibition of the Receptor for Advanced Glycation End Products. Journal of Immunology, 2004, 173, 1399-1405.	0.4	132
114	AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene, 2004, 23, 1514-1521.	2.6	254
115	Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature, 2004, 430, 569-573.	13.7	624
116	Cyclophilin A Regulates TCR Signal Strength in CD4+ T Cells via a Proline-Directed Conformational Switch in Itk. Immunity, 2004, 21, 189-201.	6.6	194
117	Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nature Medicine, 2003, 9, 1138-1143.	15.2	362
118	Production of Ribosome Components in Effector CD4+ T Cells Is Accelerated by TCR Stimulation and Coordinated by ERK-MAPK. Immunity, 2003, 19, 535-548.	6.6	43
119	Cyclophilin A Interacts with HIV-1 Vpr and Is Required for Its Functional Expression. Journal of Biological Chemistry, 2003, 278, 43202-43213.	1.6	78
120	As 2 O 3 Enhances Retroviral Reverse Transcription and Counteracts Ref1 Antiviral Activity. Journal of Virology, 2003, 77, 3167-3180.	1.5	72
121	Envelope-Dependent, Cyclophilin-Independent Effects of Glycosaminoglycans on Human Immunodeficiency Virus Type 1 Attachment and Infection. Journal of Virology, 2002, 76, 6332-6343.	1.5	111
122	Cyclophilin A Peptidyl-Prolyl Isomerase Activity Promotes Zpr1 Nuclear Export. Molecular and Cellular Biology, 2002, 22, 6993-7003.	1.1	58
123	Specific Incorporation of Heat Shock Protein 70 Family Members into Primate Lentiviral Virions. Journal of Virology, 2002, 76, 4666-4670.	1.5	125
124	Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO Journal, 2001, 20, 1300-1309.	3.5	258
125	HIV-1 and Ebola virus: The getaway driver nabbed. Nature Medicine, 2001, 7, 1278-1280.	15.2	19
126	Context-Dependent Phenotype of a Human Immunodeficiency Virus Type 1 Nucleocapsid Mutation. Journal of Virology, 2001, 75, 7193-7197.	1.5	7

#	Article	IF	CITATIONS
127	Rescue of Multiple Viral Functions by a Second-Site Suppressor of a Human Immunodeficiency Virus Type 1 Nucleocapsid Mutation. Journal of Virology, 2000, 74, 4273-4283.	1.5	27
128	Human Immunodeficiency Virus Type 1 Virion Density Is Not Determined by Nucleocapsid Basic Residues. Journal of Virology, 2000, 74, 6734-6740.	1.5	39
129	Basic Residues in Human Immunodeficiency Virus Type 1 Nucleocapsid Promote Virion Assembly via Interaction with RNA. Journal of Virology, 2000, 74, 3046-3057.	1.5	177
130	Isolation, Characterization and Targeted Disruption of Mouse Ppia: Cyclophilin A Is Not Essential for Mammalian Cell Viability. Genomics, 2000, 68, 167-178.	1.3	44
131	Human Immunodeficiency Virus Type 1 Gag Polyprotein Multimerization Requires the Nucleocapsid Domain and RNA and Is Promoted by the Capsid-Dimer Interface and the Basic Region of Matrix Protein. Journal of Virology, 1999, 73, 8527-8540.	1.5	168
132	Translation Elongation Factor 1-Alpha Interacts Specifically with the Human Immunodeficiency Virus Type 1 Gag Polyprotein. Journal of Virology, 1999, 73, 5388-5401.	1.5	148
133	Sequence Note: The HIV Type 1 Replication Block in Nonhuman Primates Is Not Explained by Differences in Cyclophilin A Primary Structure. AIDS Research and Human Retroviruses, 1998, 14, 95-97.	0.5	14
134	Human Immunodeficiency Virus Type 1 Replication Is Modulated by Host Cyclophilin A Expression Levels. Journal of Virology, 1998, 72, 6430-6436.	1.5	88
135	Absconding with the Chaperone: Essential Cyclophilin–Gag Interaction in HIV-1 Virions. Cell, 1996, 87, 1157-1159.	13.5	134
136	Assignment of cyclophilin A (PPIA) to human chromosome band 7p13 by in situ hybridization. Cytogenetic and Genome Research, 1996, 74, 262-262.	0.6	8
137	Inhibition of HIV-1 Replication by Cyclosporine A or Related Compounds Correlates with the Ability to Disrupt the Gag–Cyclophilin A Interaction. Virology, 1996, 222, 279-282.	1.1	135
138	The yeast two-hybrid system for studying proteinâ€"protein interactions. Current Opinion in Biotechnology, 1995, 6, 59-64.	3.3	81
139	Cyclophilin and Gag in HIV-1 Replication and Pathogenesis. Advances in Experimental Medicine and Biology, 1995, 374, 217-228.	0.8	7
140	Specific incorporation of cyclophilin A into HIV-1 virions. Nature, 1994, 372, 359-362.	13.7	740
141	The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell, 1994, 79, 119-130.	13.5	622
142	Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell, 1993, 73, 1067-1078.	13.5	817
143	Specific antimononuclear phagocyte monoclonal antibodies. Application to the purification of dendritic cells and the tissue localization of macrophages Journal of Experimental Medicine, 1983, 158, 126-145.	4.2	199
144	Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication Journal of Experimental Medicine, 1983, 158, 174-191.	4.2	299