Tobias G Oesterlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3111438/publications.pdf

Version: 2024-02-01

840776 39 415 11 citations h-index papers

g-index 41 41 41 524 docs citations times ranked citing authors all docs

794594

19

#	Article	IF	CITATIONS
1	Local Impedance Drop Predicts Durable Conduction Block in Patients With Paroxysmal Atrial Fibrillation. JACC: Clinical Electrophysiology, 2022, 8, 595-604.	3.2	11
2	Local catheter impedance drop during pulmonary vein isolation predicts acute conduction block in patients with paroxysmal atrial fibrillation: initial results of the LOCALIZE clinical trial. Europace, 2021, 23, 1042-1051.	1.7	42
3	Cycle length statistics during human atrial fibrillation reveal refractory properties of the underlying substrate: a combined <i>in silico</i> and clinical test of concept study. Europace, 2021, 23, i133-i142.	1.7	4
4	B-PO02-108 LOCAL IMPEDANCE MEASUREMENTS WITH THE INTELLANAV MIFI OI AND THE INTELLANAV STABLEPOINT ABLATION CATHETER ARE LINEARLY RELATED. Heart Rhythm, 2021, 18, S141.	0.7	0
5	Local Electrical Impedance Mapping of the Atria: Conclusions on Substrate Properties and Confounding Factors. Frontiers in Physiology, 2021, 12, 788885.	2.8	3
6	Imaging, biomarker and invasive assessment of diffuse left ventricular myocardial fibrosis in atrial fibrillation. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 13.	3.3	12
7	Mapping and Removing the Ventricular Far Field Component in Unipolar Atrial Electrograms. IEEE Transactions on Biomedical Engineering, 2020, 67, 2905-2915.	4.2	9
8	Automatic Identification of Reentry Mechanisms and Critical Sites During Atrial Tachycardia by Analyzing Areas of Activity. IEEE Transactions on Biomedical Engineering, 2018, 65, 2334-2344.	4.2	10
9	Regional conduction velocity calculation from clinical multichannel electrograms in human atria. Computers in Biology and Medicine, 2018, 92, 188-196.	7.0	27
10	High-density Mapping Reveals Short-term Reversibility of Atrial Ablation Lesions. Current Directions in Biomedical Engineering, 2018, 4, 385-388.	0.4	O
11	A Computational Framework to Benchmark Basket Catheter Guided Ablation in Atrial Fibrillation. Frontiers in Physiology, 2018, 9, 1251.	2.8	15
12	Left atrial voltage, circulating biomarkers of fibrosis, and atrial fibrillation ablation. A prospective cohort study. PLoS ONE, 2018, 13, e0189936.	2.5	34
13	Patient-Specific Identification of Atrial Flutter Vulnerability–A Computational Approach to Reveal Latent Reentry Pathways. Frontiers in Physiology, 2018, 9, 1910.	2.8	27
14	Atrial Signals – Modeling Meets Biosignal Analysis. IFMBE Proceedings, 2018, , 723-726.	0.3	4
15	Intra-cardiac and peripheral levels of biochemical markers of fibrosis in patients undergoing catheter ablation for atrial fibrillation. Europace, 2017, 19, 1944-1950.	1.7	23
16	Assessment of local high-density mapping for the analysis of radiofrequency ablation lesions in the left atrium. Current Directions in Biomedical Engineering, 2017, 3, 109-112.	0.4	0
17	Mini Electrodes on Ablation Catheters: Valuable Addition or Redundant Information?â€"Insights from a Computational Study. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-13.	1.3	7
18	A Computational Framework to Benchmark Basket Catheter Guided Ablation., 2017,,.		2

#	Article	IF	Citations
19	Estimating refractory periods during atrial fibrillation based on electrogram cycle lengths in a heterogeneous simulation setup. Current Directions in Biomedical Engineering, 2017, 3, 317-320.	0.4	6
20	Definition, estimation and limitations of the dominant frequency in intracardiac electrograms. Current Directions in Biomedical Engineering, 2017, 3, 95-98.	0.4	3
21	Model assisted biosignal analysis of atrial electrograms. TM Technisches Messen, 2016, 83, 102-111.	0.7	1
22	Preprocessing of unipolar signals acquired by a novel intracardiac mapping system. Current Directions in Biomedical Engineering, 2016, 2, 259-262.	0.4	2
23	Automatic detection and mapping of double potentials in intracardiac electrograms. Current Directions in Biomedical Engineering, 2016, 2, 179-183.	0.4	1
24	Basket-Type Catheters: Diagnostic Pitfalls Caused by Deformation and Limited Coverage. BioMed Research International, 2016, 2016, 1-13.	1.9	28
25	Classification of cardiac excitation patterns during atrial fibrillation. Current Directions in Biomedical Engineering, 2016, 2, 161-166.	0.4	4
26	Analysis and visualization of intracardiac electrograms in diagnosis and research: Concept and application of KaPAVIE. Computer Methods and Programs in Biomedicine, 2016, 127, 165-173.	4.7	11
27	P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference. Biomedizinische Technik, 2016, 61, 37-56.	0.8	45
28	Orthogonal component analysis to remove ventricular far field in non periodic sustained atrial flutter. , $2015, , .$		2
29	Locating regions of arrhythmogenic substrate by analyzing the duration of triggered atrial activities. Current Directions in Biomedical Engineering, 2015, 1, 50-53.	0.4	0
30	Interactive visualization of cardiac anatomy and atrial excitation for medical diagnosis and research. Current Directions in Biomedical Engineering, 2015, 1, 400-404.	0.4	1
31	Virtualizing clinical cases of atrial flutter in a fast marching simulation including conduction velocity and ablation scars. Current Directions in Biomedical Engineering, 2015, 1, 405-408.	0.4	12
32	Analyzing the atrial depolarization wavefront triggered from sinus node and coronary sinus for identification of the arrhythmogenic substrate. , 2015 , , .		0
33	Fuzzy decision tree to classify complex fractionated atrial electrograms. Biomedizinische Technik, 2015, 60, 245-55.	0.8	18
34	Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model. PLoS ONE, 2014, 9, e114577.	2.5	33
35	Extraction of time-frequency target features. , 2010, , .		4
36	Experimental observations of active invariance striations in a tank environment. Journal of the Acoustical Society of America, 2010, 128, 611-618.	1.1	11

#	Article	IF	CITATIONS
37	Local Impedance Drop Predicts Durable Conduction Block in Patients With Paroxysmal Atrial Fibrillation. SSRN Electronic Journal, 0, , .	0.4	O
38	An Interactive Virtual Reality Environment for Analysis of Clinical Atrial Arrhythmias and Ablation Planning. , 0, , .		3
39	Virtual Reality Visualization of Arrhythmias on a Smartphone. , 0, , .		O