
David G Bourne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3110178/publications.pdf Version: 2024-02-01

DAVID C. ROURNE

#	Article	IF	CITATIONS
1	Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annual Review of Microbiology, 2016, 70, 317-340.	2.9	600
2	The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME Journal, 2015, 9, 2261-2274.	4.4	548
3	Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Frontiers in Microbiology, 2017, 8, 341.	1.5	425
4	Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur. Applied and Environmental Microbiology, 2009, 75, 3492-3501.	1.4	395
5	Microbial disease and the coral holobiont. Trends in Microbiology, 2009, 17, 554-562.	3.5	360
6	Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environmental Microbiology, 1996, 62, 4086-4094.	1.4	347
7	Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.	8.1	327
8	Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science, 2017, 355, 731-733.	6.0	319
9	Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environmental Microbiology, 2005, 7, 1162-1174.	1.8	301
10	Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria. Applied and Environmental Microbiology, 2012, 78, 3136-3144.	1.4	275
11	Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME Journal, 2019, 13, 921-936.	4.4	269
12	Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME Journal, 2015, 9, 894-908.	4.4	268
13	Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature Communications, 2018, 9, 4921.	5.8	264
14	Differential specificity between closely related corals and abundant <i>Endozoicomonas</i> endosymbionts across global scales. ISME Journal, 2017, 11, 186-200.	4.4	259
15	DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature, 2013, 502, 677-680.	13.7	258
16	Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environmental Toxicology, 2001, 16, 523-534.	2.1	244
17	Coral Pathogens Identified for White Syndrome (WS) Epizootics in the Indo-Pacific. PLoS ONE, 2008, 3, e2393.	1.1	235
18	Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins, 1994, 2, 228-235.	1.0	228

#	Article	IF	CITATIONS
19	Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiology Ecology, 2009, 68, 152-163.	1.3	224
20	<i>Vibrio</i> infections triggering mass mortality events in a warming Mediterranean Sea. Environmental Microbiology, 2010, 12, 2007-2019.	1.8	217
21	Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends in Microbiology, 2010, 18, 101-108.	3.5	203
22	Comparison of pmoA PCR Primer Sets as Tools for Investigating Methanotroph Diversity in Three Danish Soils. Applied and Environmental Microbiology, 2001, 67, 3802-3809.	1.4	202
23	Sediment and Turbidity Associated with Offshore Dredging Increase Coral Disease Prevalence on Nearby Reefs. PLoS ONE, 2014, 9, e102498.	1.1	197
24	Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environmental Microbiology Reports, 2011, 3, 651-660.	1.0	195
25	The microbiome in threatened species conservation. Biological Conservation, 2019, 229, 85-98.	1.9	185
26	Nutrient Availability and Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses. Trends in Microbiology, 2019, 27, 678-689.	3.5	182
27	A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME Journal, 2014, 8, 999-1007.	4.4	180
28	A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nature Microbiology, 2019, 4, 2090-2100.	5.9	160
29	Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Communications Biology, 2018, 1, 95.	2.0	154
30	Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Research, 2006, 40, 1294-1302.	5.3	151
31	Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME Journal, 2013, 7, 1452-1458.	4.4	146
32	Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome, 2019, 7, 94.	4.9	126
33	The Urgent Need for Robust Coral Disease Diagnostics. PLoS Pathogens, 2011, 7, e1002183.	2.1	124
34	Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ, 2016, 4, e2275.	0.9	122
35	Seasonal Rainfall and Runoff Promote Coral Disease on an Inshore Reef. PLoS ONE, 2011, 6, e16893.	1.1	117
36	Coral Probiotics: Premise, Promise, Prospects. Annual Review of Animal Biosciences, 2021, 9, 265-288.	3.6	113

3

#	Article	IF	CITATIONS
37	Responses of coral-associated bacterial communities to heat stress differ with <i>Symbiodinium</i> type on the same coral host. Molecular Ecology, 2010, 19, 1978-1990.	2.0	112
38	Extending the natural adaptive capacity of coral holobionts. Nature Reviews Earth & Environment, 2021, 2, 747-762.	12.2	110
39	Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Marine Biology, 2007, 151, 1711-1720.	0.7	106
40	Dynamics of seasonal outbreaks of black band disease in an assemblage of <i>Montipora</i> species at Pelorus Island (Great Barrier Reef, Australia). Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2795-2803.	1.2	105
41	Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass. Environmental Microbiology, 2005, 7, 723-736.	1.8	104
42	Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral <i>Acropora millepora</i> . Molecular Ecology, 2014, 23, 4682-4695.	2.0	104
43	Genomic and proteomic analyses of the coral pathogen <i>Vibrio coralliilyticus</i> reveal a diverse virulence repertoire. ISME Journal, 2011, 5, 1471-1483.	4.4	103
44	Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Marine Biology, 2017, 164, 1.	0.7	101
45	Successional changes in bacterial communities during the development of black band disease on the reef coral, <i>Montipora hispida</i> . ISME Journal, 2010, 4, 203-214.	4.4	94
46	Nutrient cycling in early coral life stages: <i>Pocillopora damicornis</i> larvae provide their algal symbiont (<i>Symbiodinium</i>) with nitrogen acquired from bacterial associates. Ecology and Evolution, 2013, 3, 2393-2400.	0.8	94
47	Molecular methods for the study of methanotroph ecology. FEMS Microbiology Ecology, 1998, 27, 103-114.	1.3	90
48	Vibrio Zinc-Metalloprotease Causes Photoinactivation of Coral Endosymbionts and Coral Tissue Lesions. PLoS ONE, 2009, 4, e4511.	1.1	89
49	The transcriptomic response of the coral <i>Acropora digitifera</i> to a competent <i>Symbiodinium</i> strain: the symbiosome as an arrested early phagosome. Molecular Ecology, 2016, 25, 3127-3141.	2.0	88
50	Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. MBio, 2019, 10, .	1.8	88
51	Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the <scp><i>A</i></scp> <i>cropora millepora</i> microbiome. Environmental Microbiology, 2014, 16, 3345-3359.	1.8	84
52	Novel Alkane Hydroxylase Gene (<i>alkB</i>) Diversity in Sediments Associated with Hydrocarbon Seeps in the Timor Sea, Australia. Applied and Environmental Microbiology, 2009, 75, 7391-7398.	1.4	80
53	The coral immune response facilitates protection against microbes during tissue regeneration. Molecular Ecology, 2015, 24, 3390-3404.	2.0	75
54	Isolation of lytic bacteriophage against <i>Vibrio harveyi</i> . Journal of Applied Microbiology, 2010, 108, 1744-1750.	1.4	74

#	Article	IF	CITATIONS
55	Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. ELife, 2017, 6, .	2.8	74
56	Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. Methods, 2007, 42, 358-376.	1.9	70
57	Towards a better understanding of white syndromes and their causes on Indo-Pacific coral reefs. Coral Reefs, 2015, 34, 233-242.	0.9	70
58	Coral-associated bacterial communities on Ningaloo Reef, Western Australia. FEMS Microbiology Ecology, 2011, 75, 134-144.	1.3	69
59	Disentangling causation: complex roles of coralâ€associated microorganisms in disease. Environmental Microbiology, 2018, 20, 431-449.	1.8	69
60	Coral-Bacterial Communities before and after a Coral Mass Spawning Event on Ningaloo Reef. PLoS ONE, 2012, 7, e36920.	1.1	68
61	Microbial community dynamics in a larval aquaculture system of the tropical rock lobster, Panulirus ornatus. Aquaculture, 2004, 242, 31-51.	1.7	67
62	Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environmental Microbiology, 2016, 18, 752-765.	1.8	67
63	Microbial processes driving coral reef organic carbon flow. FEMS Microbiology Reviews, 2017, 41, 575-595.	3.9	67
64	Coral larvae for restoration and research: a large-scale method for rearing <i>Acropora millepora</i> larvae, inducing settlement, and establishing symbiosis. PeerJ, 2017, 5, e3732.	0.9	67
65	Exploring the diversity-stability paradigm using sponge microbial communities. Scientific Reports, 2018, 8, 8425.	1.6	66
66	Phage therapy treatment of the coral pathogen <i><scp>V</scp>ibrio coralliilyticus</i> . MicrobiologyOpen, 2013, 2, 64-74.	1.2	64
67	Bacterial communities of juvenile corals infected with different Symbiodinium (dinoflagellate) clades. Marine Ecology - Progress Series, 2009, 389, 45-59.	0.9	63
68	Identification of a Ciliate (Oligohymenophorea: Scuticociliatia) Associated with Brown Band Disease on Corals of the Great Barrier Reef. Applied and Environmental Microbiology, 2008, 74, 883-888.	1.4	62
69	Changes in sulfate-reducing bacterial populations during the onset of black band disease. ISME Journal, 2011, 5, 559-564.	4.4	61
70	Disentangling the effect of host-genotype and environment on the microbiome of the coral <i>Acropora tenuis</i> . PeerJ, 2019, 7, e6377.	0.9	60
71	Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. Royal Society Open Science, 2019, 6, 190355.	1.1	59
72	Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: Current methods and future prospects. Aquaculture, 2009, 287, 1-10.	1.7	58

#	Article	IF	CITATIONS
73	Molecular Delineation of Species in the Coral Holobiont. Advances in Marine Biology, 2012, 63, 1-65.	0.7	58
74	Coral Reef Bacterial Communities. , 2013, , 163-187.		58
75	A single cyanobacterial ribotype is associated with both red and black bands on diseased corals from Palau. Diseases of Aquatic Organisms, 2006, 69, 111-118.	0.5	57
76	Localization, abundance and community structure of bacteria associated with Artemia: Effects of nauplii enrichment and antimicrobial treatment. Aquaculture, 2009, 293, 278-285.	1.7	55
77	Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reefâ€building coral. Molecular Ecology, 2018, 27, 1065-1080.	2.0	53
78	Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ, 2016, 4, e1511.	0.9	53
79	White Syndrome-Affected Corals Have a Distinct Microbiome at Disease Lesion Fronts. Applied and Environmental Microbiology, 2017, 83, .	1.4	52
80	Biofilm development within a larval rearing tank of the tropical rock lobster, Panulirus ornatus. Aquaculture, 2006, 260, 27-38.	1.7	51
81	Intergenerational Transfer of Specific Bacteria in Corals and Possible Implications for Offspring Fitness. Microbial Ecology, 2013, 65, 227-231.	1.4	51
82	Microbiological assessment of a disease outbreak on corals from Magnetic Island (Great Barrier Reef,) Tj ETQqO	0 0 rgBT /	Overlock 10 Tr
83	Pathogenicity and Infection Cycle of Vibrio owensii in Larviculture of the Ornate Spiny Lobster (Panulirus ornatus). Applied and Environmental Microbiology, 2012, 78, 2841-2849.	1.4	49
84	Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance. Applied and Environmental Microbiology, 2017, 83, .	1.4	47
85	Biogeochemical conditions determine virulence of black band disease in corals. ISME Journal, 2012, 6, 1526-1534.	4.4	45
86	Insights into the Cultured Bacterial Fraction of Corals. MSystems, 2021, 6, e0124920.	1.7	45
87	Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs, 2014, 33, 705-716.	0.9	44
88	Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Science Advances, 2020, 6, .	4.7	44
89	Microbial Diversity within Early-Stage Cultured Panulirus ornatus Phyllosomas. Applied and Environmental Microbiology, 2007, 73, 1940-1951.	1.4	43
90	Diversity and stability of coral endolithic microbial communities at a naturally high <i>p</i> CO ₂ reef. Molecular Ecology, 2017, 26, 5344-5357.	2.0	43

#	Article	IF	CITATIONS
91	Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME Journal, 2020, 14, 2211-2222.	4.4	43
92	An Improved Detection and Quantification Method for the Coral Pathogen Vibrio coralliilyticus. PLoS ONE, 2013, 8, e81800.	1.1	43
93	Effects of temperature and light on the progression of black band disease on the reef coral, Montipora hispida. Coral Reefs, 2011, 30, 753.	0.9	42
94	Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microbiology Ecology, 2000, 31, 29-38.	1.3	40
95	Zooxanthellae Harvested by Ciliates Associated with Brown Band Syndrome of Corals Remain Photosynthetically Competent. Applied and Environmental Microbiology, 2007, 73, 1968-1975.	1.4	40
96	Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined disease and bleaching event. Coral Reefs, 2019, 38, 591-603.	0.9	40
97	Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME Journal, 2020, 14, 1435-1450.	4.4	40
98	Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity. FEMS Microbiology Ecology, 2009, 68, 142-151.	1.3	39
99	The use of PCR to aid in the rapid identification of Vibrio harveyi isolates. Journal of Applied Microbiology, 2003, 95, 1293-1303.	1.4	37
100	Coral-mucus-associated <i>Vibrio</i> integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation. ISME Journal, 2011, 5, 962-972.	4.4	37
101	Customized Medicine for Corals. Frontiers in Marine Science, 2019, 6, .	1.2	37
102	Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral <i>Acropora millepora</i> . ISME Journal, 2016, 10, 1804-1808.	4.4	36
103	Unraveling the microbial processes of black band disease in corals through integrated genomics. Scientific Reports, 2017, 7, 40455.	1.6	36
104	The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress. FEMS Microbiology Ecology, 2017, 93, .	1.3	36
105	Diversity of deep-water coral-associated bacteria and comparison across depth gradients. FEMS Microbiology Ecology, 2019, 95, .	1.3	36
106	Symbiodiniaceae probiotics for use in bleaching recovery. Restoration Ecology, 2020, 28, 282-288.	1.4	36
107	Rehabilitation of coral reefs through removal of macroalgae: state of knowledge and considerations for management and implementation. Restoration Ecology, 2018, 26, 827-838.	1.4	35
108	Cymo melanodactylus crabs slow progression of white syndrome lesions on corals. Coral Reefs, 2013, 32, 43-48.	0.9	33

#	Article	IF	CITATIONS
109	Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. , 2015, 3, cov032.		33
110	Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated. Frontiers in Marine Science, 2016, 3, .	1.2	33
111	Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics, 2019, 20, 148.	1.2	33
112	Sediment microbial community analysis: Establishing impacts of aquaculture on a tropical mangrove ecosystem. Aquaculture, 2009, 297, 91-98.	1.7	32
113	Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa. FEMS Microbiology Ecology, 2012, 80, 509-520.	1.3	32
114	Phylogeny of the coral pathogen <i>Vibrio coralliilyticus</i> . Environmental Microbiology Reports, 2010, 2, 172-178.	1.0	31
115	Coral Diversity and the Severity of Disease Outbreaks: A Cross-Regional Comparison of <i>Acropora</i> White Syndrome in a Species-Rich Region (American Samoa) with a Species-Poor Region (Northwestern Hawaiian Islands). Journal of Marine Biology, 2011, 2011, 1-8.	1.0	31
116	<i>In situ</i> visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ, 2016, 4, e2424.	0.9	31
117	Elevated seawater temperatures have a limited impact on the coral immune response following physical damage. Hydrobiologia, 2015, 759, 201-214.	1.0	30
118	Coâ€dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with <i>Acropora tenuis</i> juveniles. MicrobiologyOpen, 2020, 9, e959.	1.2	30
119	Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Communications Biology, 2020, 3, 442.	2.0	30
120	Microbiome dynamics in the tissue and mucus of acroporid corals differ in relation to host and environmental parameters. PeerJ, 2020, 8, e9644.	0.9	30
121	Crown-of-Thorns Sea Star Acanthaster cf. solaris Has Tissue-Characteristic Microbiomes with Potential Roles in Health and Reproduction. Applied and Environmental Microbiology, 2018, 84, .	1.4	29
122	Microenvironments and microbial community structure in sediments. Environmental Microbiology, 2002, 4, 97-105.	1.8	26
123	Elevated CO2 Has Little Influence on the Bacterial Communities Associated With the pH-Tolerant Coral, Massive Porites spp Frontiers in Microbiology, 2018, 9, 2621.	1.5	26
124	Dual RNAâ€sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Molecular Ecology, 2020, 29, 3921-3937.	2.0	26
125	Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Marine Ecology - Progress Series, 2014, 510, 39-43.	0.9	26
126	Detection and Quantification of the Coral Pathogen <i>Vibrio coralliilyticus</i> by Real-Time PCR with TaqMan Fluorescent Probes. Applied and Environmental Microbiology, 2010, 76, 5282-5286.	1.4	25

#	Article	IF	CITATIONS
127	Screening Marine Fungi for Inhibitors of the C4 Plant Enzyme Pyruvate Phosphate Dikinase: Unguinol as a Potential Novel Herbicide Candidate. Applied and Environmental Microbiology, 2007, 73, 1921-1927.	1.4	24
128	Pyrosequencingâ€based profiling of archaeal and bacterial 16S r <scp>RNA</scp> genes identifies a novel archaeon associated with black band disease in corals. Environmental Microbiology, 2013, 15, 2994-3007.	1.8	24
129	Microbial diversity within the water column of a larval rearing system for the ornate rock lobster (Panulirus ornatus). Aquaculture, 2006, 258, 80-90.	1.7	23
130	Establishing microbial baselines to identify indicators of coral reef health. Microbiology Australia, 2018, 39, 42.	0.1	23
131	Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Scientific Reports, 2018, 8, 11885.	1.6	23
132	Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Scientific Reports, 2019, 9, 14662.	1.6	23
133	Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs, 2020, 39, 1703-1713.	0.9	23
134	Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition. Frontiers in Marine Science, 2021, 8, .	1.2	23
135	Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals. BMC Genomics, 2017, 18, 612.	1.2	22
136	Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Scientific Reports, 2020, 10, 16397.	1.6	22
137	Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf. Journal of Marine Systems, 2015, 142, 25-39.	0.9	21
138	Probiotics for coral aquaculture: challenges and considerations. Current Opinion in Biotechnology, 2022, 73, 380-386.	3.3	21
139	Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics, 2020, 21, 862.	1.2	19
140	Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species. Marine Biology, 2021, 168, 1.	0.7	19
141	Sulfurâ€oxidizing bacterial populations within cyanobacterial dominated coral disease lesions. Environmental Microbiology Reports, 2013, 5, 518-524.	1.0	18
142	Vibrionaceae infection in phyllosomas of the tropical rock lobster Panulirus ornatus as detected by fluorescence in situ hybridisation. Aquaculture, 2006, 255, 173-178.	1.7	17
143	Newly characterized distinct phases of the coral disease â€~atramentous necrosis' on the Great Barrier Reef. Diseases of Aquatic Organisms, 2008, 81, 255-259.	0.5	17
144	DMSP Production by Coral-Associated Bacteria. Frontiers in Marine Science, 2022, 9, .	1.2	17

#	Article	IF	CITATIONS
145	Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	16
146	High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea. FEMS Microbiology Ecology, 2012, 82, 75-89.	1.3	16
147	Visualization of coral host–pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain. Coral Reefs, 2015, 34, 655-662.	0.9	16
148	Microbial diversity of mid-stage Palinurid phyllosoma from Great Barrier Reef waters. Journal of Applied Microbiology, 2008, 105, 340-350.	1.4	15
149	Delivering Beneficial Microorganisms for Corals: Rotifers as Carriers of Probiotic Bacteria. Frontiers in Microbiology, 2020, 11, 608506.	1.5	15
150	Parasites and coralâ€associated invertebrates that impact coral health. Reviews in Aquaculture, 2020, 12, 2284-2303.	4.6	14
151	Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome. MSystems, 2022, 7, .	1.7	14
152	Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Molecular Ecology, 2021, 30, 3768-3782.	2.0	11
153	Vibrio coralliilyticus Search Patterns across an Oxygen Gradient. PLoS ONE, 2013, 8, e67975.	1.1	9
154	AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. Developmental and Comparative Immunology, 2021, 114, 103866.	1.0	9
155	Surface Immuno-Functionalisation for the Capture and Detection of Vibrio Species in the Marine Environment: A New Management Tool for Industrial Facilities. PLoS ONE, 2014, 9, e108387.	1.1	8
156	Removal of macroalgae from degraded reefs enhances coral recruitment. Restoration Ecology, 2022, 30, .	1.4	8
157	Algal turf structure and composition vary with particulate loads on coral reefs. Marine Pollution Bulletin, 2022, 181, 113903.	2.3	8
158	Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon. PeerJ, 2016, 4, e1758.	0.9	7
159	Modelling environmental drivers of black band disease outbreaks in populations of foliose corals in the genus <i>Montipora</i> . PeerJ, 2017, 5, e3438.	0.9	6
160	Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia. Coral Reefs, 2018, 37, 431-443.	0.9	6
161	Macroalgal canopies provide corals limited protection from bleaching and impede post-bleaching recovery. Journal of Experimental Marine Biology and Ecology, 2022, 553, 151762.	0.7	6
162	The Life Cycle of the Acropora Coral-Eating Flatworm (AEFW), Prosthiostomum acroporae; The Influence of Temperature and Management Guidelines. Frontiers in Marine Science, 2019, 6, .	1.2	5

#	Article	IF	CITATIONS
163	Development of polymerase chain reaction and fluorescent in situ hybridisation techniques for the detection of a bacterial strain that degrades the cyanobacterial toxin microcystin LR. Marine and Freshwater Research, 2005, 56, 1127.	0.7	5
164	A stratified transect approach captures reef complexity with canopy-forming organisms. Coral Reefs, 2022, 41, 897-905.	0.9	5
165	Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Scientific Reports, 2020, 10, 19990.	1.6	4
166	Co-culture with grazers can improve survival and growth of multiple coral species. Aquaculture, 2021, 544, 737095.	1.7	4
167	Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. , 2001, 16, 523.		3
168	Horizontal transfer of a natterin-like toxin encoding gene within the holobiont of the reef building coral (Cnidaria: Anthozoa: Scleractinia) and across multiple animal linages. Journal of Venom Research, 2020, 10, 7-12.	0.6	1
169	Microcystinase. , 2013, , 1726-1731.		0