KianPing Loh

List of Publications by Citations

Source: https://exaly.com/author-pdf/3109642/kianping-loh-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

610 papers

55,520 citations

100 h-index 220 g-index

649 ext. papers

62,497 ext. citations

avg, IF

11

8.04 L-index

#	Paper	IF	Citations
610	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. <i>Nature Chemistry</i> , 2013 , 5, 263-75	17.6	6689
609	Graphene oxide as a chemically tunable platform for optical applications. <i>Nature Chemistry</i> , 2010 , 2, 101	15 - 24	2633
608	Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. <i>Advanced Functional Materials</i> , 2009 , 19, 3077-3083	15.6	1875
607	Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6, 3677-94	16.7	1468
606	Hydrothermal Dehydration for the G reen Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. <i>Chemistry of Materials</i> , 2009 , 21, 2950-2956	9.6	1285
605	The chemistry of graphene. Journal of Materials Chemistry, 2010, 20, 2277		1222
604	One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. <i>ACS Nano</i> , 2009 , 3, 2367-75	16.7	976
603	Molybdenum disulfide (MoSDas a broadband saturable absorber for ultra-fast photonics. <i>Optics Express</i> , 2014 , 22, 7249-60	3.3	846
602	Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6707-13	16.4	817
601	Broadband graphene polarizer. <i>Nature Photonics</i> , 2011 , 5, 411-415	33.9	806
600	Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. <i>ACS Nano</i> , 2011 , 5, 7334-41	16.7	802
599	A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR. <i>Advanced Functional Materials</i> , 2013 , 23, 5363-5372	15.6	692
598	Length-dependent thermal conductivity in suspended single-layer graphene. <i>Nature Communications</i> , 2014 , 5, 3689	17.4	603
597	Solution-gated epitaxial graphene as pH sensor. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14392-3	16.4	602
596	High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. <i>Nature Communications</i> , 2014 , 5, 2995	17.4	556
595	Transforming C60 molecules into graphene quantum dots. <i>Nature Nanotechnology</i> , 2011 , 6, 247-52	28.7	522
594	High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8888-91	16.4	483

(2013-2012)

593	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. <i>Nature Communications</i> , 2012 , 3, 1298	17.4	465
592	Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. <i>ACS Nano</i> , 2011 , 5, 9927-33	16.7	451
591	Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. <i>Optics Express</i> , 2009 , 17, 17630-5	3.3	447
590	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. <i>Nature Reviews Chemistry</i> , 2018 , 2,	34.6	441
589	Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. <i>Advanced Materials</i> , 2011 , 23, 1514-8	24	437
588	High mobility, printable, and solution-processed graphene electronics. <i>Nano Letters</i> , 2010 , 10, 92-8	11.5	413
587	Carbocatalysts: graphene oxide and its derivatives. Accounts of Chemical Research, 2013, 46, 2275-85	24.3	409
586	Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. <i>Applied Physics Letters</i> , 2010 , 96, 111112	3.4	402
585	Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. <i>Applied Physics Letters</i> , 2009 , 95, 141103	3.4	386
584	Graphene P olymer Nanofiber Membrane for Ultrafast Photonics. <i>Advanced Functional Materials</i> , 2010 , 20, 782-791	15.6	382
583	Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. <i>Applied Physics Letters</i> , 2009 , 95, 063302	3.4	368
582	Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, A250		360
581	Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14487-95	16.4	350
580	Face-to-face transfer of wafer-scale graphene films. <i>Nature</i> , 2014 , 505, 190-4	50.4	326
579	Monolayer graphene as a saturable absorber in a mode-locked laser. <i>Nano Research</i> , 2011 , 4, 297-307	10	322
578	Controlling many-body states by the electric-field effect in a two-dimensional material. <i>Nature</i> , 2016 , 529, 185-9	50.4	301
577	Reversible multi-electron redox chemistry of Etonjugated N-containing heteroaromatic molecule-based organic cathodes. <i>Nature Energy</i> , 2017 , 2,	62.3	292
576	Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. <i>Energy</i> and Environmental Science, 2013 , 6, 2093	35.4	290

575	A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angewandte Chemie - International Edition, 2010 , 49, 6549-53	16.4	283
574	Fluorinated graphene for promoting neuro-induction of stem cells. <i>Advanced Materials</i> , 2012 , 24, 4285-9	9 9 4	280
573	Microstructuring of graphene oxide nanosheets using direct laser writing. <i>Advanced Materials</i> , 2010 , 22, 67-71	24	278
57²	Atomic layer deposition of a MoSIFilm. <i>Nanoscale</i> , 2014 , 6, 10584-8	7.7	276
57 ¹	Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties. <i>Advanced Functional Materials</i> , 2009 , 19, 3638-3643	15.6	276
57°	Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10976-7	16.4	252
569	A two-dimensional conjugated aromatic polymer via C-C coupling reaction. <i>Nature Chemistry</i> , 2017 , 9, 563-570	17.6	243
568	Graphene oxide and Rose Bengal: oxidative CH functionalisation of tertiary amines using visible light. <i>Green Chemistry</i> , 2011 , 13, 3341	10	241
567	Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. <i>Nanoscale</i> , 2012 , 4, 2958-61	7.7	237
566	High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor. <i>ACS Nano</i> , 2009 , 3, 3587-94	16.7	237
565	Magnetic molybdenum disulfide nanosheet films. <i>Nano Letters</i> , 2007 , 7, 2370-6	11.5	220
564	Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. <i>Analytical Chemistry</i> , 2010 , 82, 7387-93	7.8	217
563	Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. <i>Nature Materials</i> , 2018 , 17, 908-914	27	207
562	Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion. <i>Laser Physics Letters</i> , 2010 , 7, 591-596	1.5	201
561	Direct observation of single-walled carbon nanotube growth at the atomistic scale. <i>Nano Letters</i> , 2006 , 6, 449-52	11.5	199
560	Chemical Vapor Deposition of Large-Size Monolayer MoSe Crystals on Molten Glass. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1073-1076	16.4	196
559	Direct Synthesis of Large-Area 2D Mo C on In Situ Grown Graphene. <i>Advanced Materials</i> , 2017 , 29, 17000)72	195
558	Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. <i>Advanced Materials</i> , 2019 , 31, e1900341	24	191

(2016-2010)

557	Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. <i>Optics Letters</i> , 2010 , 35, 3622-4	3	187
556	Dynamical observation of bamboo-like carbon nanotube growth. <i>Nano Letters</i> , 2007 , 7, 2234-8	11.5	186
555	When stem cells meet graphene: Opportunities and challenges in regenerative medicine. <i>Biomaterials</i> , 2018 , 155, 236-250	15.6	181
554	Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. <i>ACS Applied Materials & District Section</i> , 10, 680-90	9.5	179
553	Growth of Bismuth Sulfide Nanowire Using Bismuth Trisxanthate Single Source Precursors. <i>Chemistry of Materials</i> , 2003 , 15, 4544-4554	9.6	173
552	Synthesis and reduction of large sized graphene oxide sheets. <i>Chemical Society Reviews</i> , 2017 , 46, 7306	-7538156	166
551	Two-dimensional dichalcogenides for light-harvesting applications. <i>Nano Today</i> , 2015 , 10, 128-137	17.9	165
550	Atomic structure of the 6HBiC(0001) nanomesh. Surface Science, 2005, 596, 176-186	1.8	165
549	Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. <i>ACS Nano</i> , 2016 , 10, 9208-9215	16.7	160
548	Tuneable near white-emissive two-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2018 , 9, 2335	17.4	159
547	One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. <i>Organic Letters</i> , 2009 , 11, 1257-60	6.2	155
546	Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. <i>Nano Energy</i> , 2019 , 61, 54-59	17.1	150
545	Atomic healing of defects in transition metal dichalcogenides. <i>Nano Letters</i> , 2015 , 15, 3524-32	11.5	147
544	Optimizing label-free DNA electrical detection on graphene platform. <i>Analytical Chemistry</i> , 2011 , 83, 2452-60	7.8	147
543	Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers. <i>ACS Catalysis</i> , 2016 , 6, 3594-3599	13.1	146
542	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. <i>Joule</i> , 2020 , 4, 1035-	-120/583	145
541	Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13611-8	3.4	144
540	Ultrafast charge transfer in MoS 2 /WSe 2 pl Heterojunction. 2D Materials, 2016 , 3, 025020	5.9	144

539	High-performance broadband photodetector using solution-processible PbSe-TiO(2)-graphene hybrids. <i>Advanced Materials</i> , 2012 , 24, 1697-702	24	141
538	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. <i>Nature Communications</i> , 2017 , 8, 14548	17.4	139
537	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. <i>Chemical Communications</i> , 2018 , 54, 2349-2352	5.8	138
536	Transforming Moir blisters into geometric graphene nano-bubbles. <i>Nature Communications</i> , 2012 , 3, 823	17.4	137
535	Chemically Exfoliated VSe Monolayers with Room-Temperature Ferromagnetism. <i>Advanced Materials</i> , 2019 , 31, e1903779	24	131
534	Polymer brushes on graphene. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10490-8	16.4	129
533	Biosensing properties of diamond and carbon nanotubes. <i>Langmuir</i> , 2004 , 20, 5484-92	4	129
532	Energy storage studies on InVO4 as high performance anode material for Li-ion batteries. <i>ACS Applied Materials & Applied & Ap</i>	9.5	128
531	High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. <i>Advanced Materials</i> , 2010 , 22, 5265-70	24	126
530	Order-disorder transition in a two-dimensional boron-carbon-nitride alloy. <i>Nature Communications</i> , 2013 , 4, 2681	17.4	125
529	Polarized emission and optical waveguide in crystalline perylene diimide microwires. <i>Advanced Materials</i> , 2010 , 22, 3661-6	24	122
528	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. <i>Advanced Materials</i> , 2018 , 30, e1801745	24	119
527	A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano, 2010, 4, 7387-94	16.7	118
526	Vector dissipative solitons in graphene mode locked fiber lasers. <i>Optics Communications</i> , 2010 , 283, 33	3 <u>4</u> -333	8 118
525	A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. <i>Nature Communications</i> , 2018 , 9, 76	17.4	117
524	Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. <i>Water Research</i> , 2013 , 47, 4621-9	12.5	116
523	Chemical Vapor Deposition of Large-Sized Hexagonal WSelCrystals on Dielectric Substrates. <i>Advanced Materials</i> , 2015 , 27, 6722-7	24	115
522	Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. <i>Applied Physics Letters</i> , 2011 , 98, 193113	3.4	115

(2017-2017)

521	Chemical Stabilization of 1T' Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2504-2511	16.4	114	
520	Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9392-9400	16.4	110	
519	Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. <i>Optics Express</i> , 2013 , 21, 10010-8	3.3	110	
518	Using detonation nanodiamond for the specific capture of glycoproteins. <i>Analytical Chemistry</i> , 2008 , 80, 4659-65	7.8	110	
517	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. <i>Chemistry of Materials</i> , 2018 , 30, 1762-1768	9.6	109	
516	Defect engineered bioactive transition metals dichalcogenides quantum dots. <i>Nature Communications</i> , 2019 , 10, 41	17.4	107	
515	Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. <i>Nano Letters</i> , 2017 , 17, 1970-1977	11.5	106	
514	In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS Flakes. Journal of the American Chemical Society, 2017 , 139, 10133-10141	16.4	106	
513	Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	106	
512	Tandem catalysis of amines using porous graphene oxide. <i>Journal of the American Chemical Society</i> , 2015 , 137, 685-90	16.4	103	
511	Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. <i>Small</i> , 2015 , 11, 1792-800	11	102	
510	Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. <i>Advanced Materials</i> , 2018 , 30, e1802368	24	100	
509	Molten salt synthesis and energy storage studies on CuCo2O4 and CuOlCo3O4. <i>RSC Advances</i> , 2012 , 2, 9619	3.7	100	
508	Li-cycling properties of molten salt method prepared nano/submicrometer and micrometer-sized CuO for lithium batteries. <i>ACS Applied Materials & Description</i> (2013), 5, 4361-6	9.5	100	
507	Toward high throughput interconvertible graphane-to-graphene growth and patterning. <i>ACS Nano</i> , 2010 , 4, 6146-52	16.7	100	
506	Molecular-Beam Epitaxy of Two-Dimensional InSe and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. <i>Nano Letters</i> , 2018 , 18, 6340-6346	11.5	100	
505	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017 , 139, 8897-8904	16.4	99	
504	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. <i>Nano Letters</i> , 2017 , 17, 4122-4129	11.5	99	

503	Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties. <i>ACS Nano</i> , 2010 , 4, 6180-6	16.7	99
502	Exciton-Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles. <i>Advanced Materials</i> , 2016 , 28, 2709-15	24	97
501	Single-Atom Coated Separator for Robust Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 25147-25154	9.5	95
500	Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. <i>Small</i> , 2015 , 11, 96	3 <u>-191</u>	94
499	Improved photoelectrical properties of MoS(2) films after laser micromachining. ACS Nano, 2014 , 8, 633	34 :6 . 3	94
498	Controlled hydrogenation of graphene sheets and nanoribbons. <i>ACS Nano</i> , 2011 , 5, 888-96	16.7	94
497	Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function. <i>Stroke</i> , 2010 , 41, 2661-8	6.7	94
496	Graphene and Graphene-like Molecules: Prospects in Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1095-102	16.4	93
495	Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. <i>Small</i> , 2012 , 8, 423-31	11	93
494	Flow sensing of single cell by graphene transistor in a microfluidic channel. <i>Nano Letters</i> , 2011 , 11, 5240	0-6 1.5	93
493	Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8084-5	16.4	93
492	Chemical Vapor Deposition of High-Quality Large-Sized MoS Crystals on Silicon Dioxide Substrates. <i>Advanced Science</i> , 2016 , 3, 1500033	13.6	93
491	Surface conditioning of chemical vapor deposited hexagonal boron nitride film for negative electron affinity. <i>Applied Physics Letters</i> , 1999 , 74, 28-30	3.4	92
490	Coordination-assisted assembly of 1-D nanostructured light-harvesting antenna. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7210-1	16.4	91
489	Making patterns on graphene. Advanced Materials, 2010, 22, 3615-20	24	91
488	Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering. <i>ACS Nano</i> , 2016 , 10, 6383-91	16.7	90
487	Engineering Bandgaps of Monolayer MoS2 and WS2 on Fluoropolymer Substrates by Electrostatically Tuned Many-Body Effects. <i>Advanced Materials</i> , 2016 , 28, 6457-64	24	89
486	Controllable deuteration of halogenated compounds by photocatalytic DO splitting. <i>Nature Communications</i> , 2018 , 9, 80	17.4	88

(2017-2019)

485	Unraveling the Potassium Storage Mechanism in Graphite Foam. <i>Advanced Energy Materials</i> , 2019 , 9, 1900579	21.8	86
484	High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4882-4892	13	86
483	Phase Transformations in TiS2 during K Intercalation. ACS Energy Letters, 2017, 2, 1835-1840	20.1	85
482	Compositional mapping of the argonthethaneflydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system. <i>Applied Physics Letters</i> , 2000 , 77, 2692-2694	3.4	84
481	An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array. <i>Nanotechnology</i> , 2009 , 20, 175705	3.4	83
480	Wide memory window in graphene oxide charge storage nodes. <i>Applied Physics Letters</i> , 2010 , 96, 14310	93.4	82
479	Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. <i>Langmuir</i> , 2009 , 25, 185-91	4	82
478	Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12922-12929	16.4	81
477	From bulk to molecularly thin hybrid perovskites. <i>Nature Reviews Materials</i> , 2020 , 5, 482-500	73.3	80
476	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. <i>Nano Letters</i> , 2019 , 19, 5109-5117	11.5	80
475	Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride. <i>Nano Letters</i> , 2014 , 14, 5133-9	11.5	80
474	The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. <i>Journal of Crystal Growth</i> , 2006 , 287, 157-161	1.6	80
473	Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16832-7	16.4	77
472	Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. <i>Nano Letters</i> , 2018 , 18, 482-490	11.5	76
471	Self-Assembly and Selected Area Growth of Zinc Oxide Nanorods on Any Surface Promoted by an Aluminum Precoat. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 11419-11425	3.4	76
47°	Covalent-Organic-Framework-Based Li-CO Batteries. <i>Advanced Materials</i> , 2019 , 31, e1905879	24	<i>75</i>
469	Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity. <i>ACS Sensors</i> , 2016 , 1, 543-551	9.2	74
468	Tailoring pores in graphene-based materials: from generation to applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16537-16558	13	74

467	Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. <i>Nature Nanotechnology</i> , 2018 , 13, 828-834	28.7	74
466	Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Applied Materials & amp; Interfaces, 2016, 8, 16154-9	9.5	72
465	Step flow versus mosaic film growth in hexagonal boron nitride. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2368-73	16.4	72
464	Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 941-949	2.6	71
463	Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. <i>CrystEngComm</i> , 2013 , 15, 3568	3.3	71
462	Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. <i>ACS Nano</i> , 2010 , 4, 495-505	16.7	69
461	Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis. <i>Journal of Crystal Growth</i> , 2006 , 293, 36-42	1.6	69
460	Engineering covalently bonded 2D layered materials by self-intercalation. <i>Nature</i> , 2020 , 581, 171-177	50.4	68
459	Molten synthesis of ZnO.Fe3O4 and Fe2O3 and its electrochemical performance. <i>Electrochimica Acta</i> , 2014 , 118, 75-80	6.7	68
458	Controlled growth of ultrathin Mo 2 C superconducting crystals on liquid Cu surface. <i>2D Materials</i> , 2017 , 4, 011012	5.9	67
457	Wafer-Scale Single-Crystalline AB-Stacked Bilayer Graphene. <i>Advanced Materials</i> , 2016 , 28, 8177-8183	24	67
456	Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. <i>Small</i> , 2016 , 12, 1593-604	11	67
455	Highly Enhanced Third-Harmonic Generation in 2D Perovskites at Excitonic Resonances. <i>ACS Nano</i> , 2018 , 12, 644-650	16.7	66
454	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic-Inorganic Perovskite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15972-15976	16.4	65
453	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2018 , 30, 5743-5749	9.6	65
452	Bisanthracene bis(dicarboxylic imide)s as soluble and stable NIR dyes. <i>Chemistry - A European Journal</i> , 2009 , 15, 9299-302	4.8	65
451	Nickel©obalt Double Hydroxide as a Multifunctional Mediator for Ultrahigh-Rate and Ultralong-Life Liß Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802431	21.8	64
450	High-performance graphene-titania platform for detection of phosphopeptides in cancer cells. <i>Analytical Chemistry</i> , 2012 , 84, 6693-700	7.8	63

449	Preparation of Conductive Silver Films at Mild Temperatures for Printable Organic Electronics. <i>Chemistry of Materials</i> , 2011 , 23, 3273-3276	9.6	63
448	Hot carrier diffusion in graphene. <i>Physical Review B</i> , 2010 , 82,	3.3	63
447	Solution-processable polyphenylphenyl dendron bearing molecules for highly efficient blue light-emitting diodes. <i>Organic Letters</i> , 2005 , 7, 391-4	6.2	63
446	Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors. <i>ACS Nano</i> , 2018 , 12, 852-860	16.7	63
445	Quasi-Monolayer Black Phosphorus with High Mobility and Air Stability. <i>Advanced Materials</i> , 2018 , 30, 1704619	24	62
444	Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. <i>Nature Communications</i> , 2014 , 5, 5461	17.4	61
443	Gold nanoparticles supported on functionalized mesoporous silica for selective oxidation of cyclohexane. <i>Microporous and Mesoporous Materials</i> , 2011 , 141, 222-230	5.3	61
442	Graphene transport at high carrier densities using a polymer electrolyte gate. <i>Europhysics Letters</i> , 2010 , 92, 27001	1.6	61
441	Pressure-Engineered Structural and Optical Properties of Two-Dimensional (CHNH)PbI Perovskite Exfoliated nm-Thin Flakes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1235-1241	16.4	61
440	Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks - from 3D solids to 2D sheets. <i>Chemical Society Reviews</i> , 2020 , 49, 4835-4866	58.5	60
439	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/N-rGO Heterostructures for Efficient LiftO2 Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1901806	21.8	60
438	Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12041-6	16.4	60
437	Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser. <i>Optics Letters</i> , 2016 , 41, 890-3	3	59
436	Stable p-Type Doping of ZnO Film in Aqueous Solution at Low Temperatures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9981-9987	3.8	59
435	Tuning the hole injection barrier at the organic/metal interface with self-assembled functionalized aromatic thiols. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 26075-80	3.4	59
434	Oxygen-induced surface state on diamond (100). <i>Diamond and Related Materials</i> , 2001 , 10, 500-505	3.5	59
433	Polyquinoneimines for lithium storage: more than the sum of its parts. <i>Materials Horizons</i> , 2016 , 3, 429-	- 4 ВД4	58
432	A hydrothermal anvil made of graphene nanobubbles on diamond. <i>Nature Communications</i> , 2013 , 4, 15	5 6 7.4	58

431	Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation. <i>Chemistry of Materials</i> , 2019 , 31, 1829-1846	9.6	57
430	Visible Surface Plasmon Modes in Single Bi⊞e⊡Nanoplate. <i>Nano Letters</i> , 2015 , 15, 8331-5	11.5	57
429	Dibenzothiophene-S,S-Dioxide-Based Conjugated Polymers: Highly Efficient Photocatalyts for Hydrogen Production from Water under Visible Light. <i>Small</i> , 2018 , 14, e1801839	11	57
428	Filling the voids of graphene foam with graphene "eggshell" for improved lithium-ion storage. <i>ACS Applied Materials & Discrete Applied & Discrete App</i>	9.5	57
427	Terahertz conductivity of twisted bilayer graphene. <i>Physical Review Letters</i> , 2013 , 110, 067401	7.4	57
426	Electrostatically self-assembled polyoxometalates on molecular-dye-functionalized diamond. Journal of the American Chemical Society, 2009 , 131, 18293-8	16.4	57
425	Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. <i>Applied Physics Letters</i> , 2005 , 87, 101908	3.4	57
424	Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31067-31075	9.5	56
423	Ion Adsorption at the Graphene/Electrolyte Interface. Journal of Physical Chemistry Letters, 2011, 2, 17	9%.480	3 56
422	Cell adhesion properties on photochemically functionalized diamond. <i>Langmuir</i> , 2007 , 23, 5615-21	4	56
421	Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations. <i>Applied Physics Letters</i> , 2003 , 82, 1881-1883	3.4	56
420	Oxygen Adsorption on (111)-Oriented Diamond: A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 5230-5240	3.4	56
419	Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. <i>Journal of Colloid and Interface Science</i> , 2007 , 315, 99-106	9.3	55
418	Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells. <i>Chemical Communications</i> , 2012 , 48, 10865-7	5.8	54
417	Graphene Oxide-Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties. Journal of Physical Chemistry Letters, 2012 , 3, 2332-6	6.4	53
416	Femtosecond pump-probe studies of reduced graphene oxide thin films. <i>Applied Physics Letters</i> , 2010 , 96, 173106	3.4	53
415	Influence of Au catalyst on the growth of ZnS nanowires. <i>Chemical Physics Letters</i> , 2004 , 400, 175-178	2.5	53
414	Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications. <i>Advanced Materials</i> , 2016 , 28, 3138-44	24	53

(2020-2011)

413	Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors. <i>Nanoscale</i> , 2011 , 3, 2268-74	7.7	52
412	Adsorption of molecular oxygen on the walls of pristine and carbon-doped (5,5) boron nitride nanotubes: Spin-polarized density functional study. <i>Physical Review B</i> , 2007 , 75,	3.3	52
411	Molecular interactions of graphene oxide with human blood plasma proteins. <i>Nanoscale</i> , 2016 , 8, 9425-	-4 1 1.7	52
410	Amino group enhanced phenazine derivatives as electrode materials for lithium storage. <i>Chemical Communications</i> , 2017 , 53, 2914-2917	5.8	51
409	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. <i>Nature Communications</i> , 2020 , 11, 3378	17.4	51
408	Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2. <i>Electrochimica Acta</i> , 2013 , 106, 143-148	6.7	51
407	Graphene Intermediate Layer in Tandem Organic Photovoltaic Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 4430-4435	15.6	51
406	Suzuki Coupling of Aryl Organics on Diamond. <i>Chemistry of Materials</i> , 2008 , 20, 3137-3144	9.6	51
405	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li D rganic Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 3498-3506	20.1	51
404	Highly sensitive reduced graphene oxide microelectrode array sensor. <i>Biosensors and Bioelectronics</i> , 2015 , 65, 265-73	11.8	50
403	In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. <i>ACS Nano</i> , 2020 , 14, 7628-7638	16.7	50
402	TRPM4 inhibition promotes angiogenesis after ischemic stroke. <i>Pflugers Archiv European Journal of Physiology</i> , 2014 , 466, 563-76	4.6	50
401	Ultrahigh Capacity Due to Multi-Electron Conversion Reaction in Reduced Graphene Oxide-Wrapped MoO2 Porous Nanobelts. <i>Small</i> , 2015 , 11, 2446-53	11	50
400	Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2600-7	16.4	50
399	Lateral Epitaxy of Atomically Sharp WSe2/WS2 Heterojunctions on Silicon Dioxide Substrates. <i>Chemistry of Materials</i> , 2016 , 28, 7194-7197	9.6	50
398	Phase-engineered transition-metal dichalcogenides for energy and electronics. <i>MRS Bulletin</i> , 2015 , 40, 585-591	3.2	49
397	Recent studies on diamond surfaces. <i>Diamond and Related Materials</i> , 2000 , 9, 1582-1590	3.5	49
396	Rapid, Scalable Construction of Highly Crystalline Acylhydrazone Two-Dimensional Covalent Organic Frameworks via Dipole-Induced Antiparallel Stacking. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4932-4943	16.4	48

395	Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics. <i>Advanced Functional Materials</i> , 2014 , 24, 731-738	15.6	48
394	Bifunctional FePt CoreBhell and Hollow Spheres: Sonochemical Preparation and Self-Assembly. <i>Chemistry of Materials</i> , 2007 , 19, 2566-2572	9.6	48
393	Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1235-9	3.4	48
392	Photoluminescence Upconversion by Defects in Hexagonal Boron Nitride. <i>Nano Letters</i> , 2018 , 18, 6898	-6 <u>9</u> 05	48
391	Graphene-Oxide-Catalyzed Direct CH-CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10848-10853	16.4	47
390	High-Performance Hybrid Solar Cell Made from CdSe/CdTe Nanocrystals Supported on Reduced Graphene Oxide and PCDTBT. <i>Advanced Functional Materials</i> , 2014 , 24, 1904-1910	15.6	47
389	A new route to graphene layers by selective laser ablation. AIP Advances, 2011, 1, 022109	1.5	47
388	Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure. <i>Nanotechnology</i> , 2009 , 20, 065203	3.4	47
387	Homoepitaxial Growth of Large-Scale Highly Organized Transition Metal Dichalcogenide Patterns. <i>Advanced Materials</i> , 2018 , 30, 1704674	24	47
386	Atom-by-Atom Fabrication of Monolayer Molybdenum Membranes. <i>Advanced Materials</i> , 2018 , 30, e170	72.81	46
385	A new class of solid state ionic conductors for application in all solid state dye sensitized solar cells. <i>Chemical Communications</i> , 2010 , 46, 2091-3	5.8	46
384	Diamond and carbon nanotube glucose sensors based on electropolymerization. <i>Diamond and Related Materials</i> , 2004 , 13, 1075-1079	3.5	46
383	Selective Accelerated Proliferation of Malignant Breast Cancer Cells on Planar Graphene Oxide Films. <i>ACS Nano</i> , 2016 , 10, 3424-34	16.7	45
382	Raman Spectroscopy of Two-Dimensional BilleSe Platelets Produced by Solvothermal Method. <i>Materials</i> , 2015 , 8, 5007-5017	3.5	45
381	Synthesis and superior optical-limiting properties of fluorene-thiophene-benzothiadazole polymer-functionalized graphene sheets. <i>Small</i> , 2010 , 6, 2292-300	11	45
380	Effect of functional group (fluorine) of aromatic thiols on electron transfer at the molecule-metal interface. <i>Journal of the American Chemical Society</i> , 2006 , 128, 935-9	16.4	45
379	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. <i>Advanced Materials</i> , 2018 , 30, e1802397	24	45
378	Molecular Beam Epitaxy of Highly Crystalline MoSe on Hexagonal Boron Nitride. <i>ACS Nano</i> , 2018 , 12, 7562-7570	16.7	44

377	Graphene Nanobubbles: A New Optical Nonlinear Material. Advanced Optical Materials, 2015, 3, 744-74	9 8.1	44
376	Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition [Invited]. <i>Optical Materials Express</i> , 2012 , 2, 708	2.6	44
375	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. <i>Journal of the American</i> Chemical Society, 2020 , 142, 18138-18149	16.4	44
374	Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An in Situ PXRD Study. <i>Chemistry of Materials</i> , 2015 , 27, 3471-3482	9.6	43
373	Electronic properties of nanodiamond decorated graphene. ACS Nano, 2012, 6, 1018-25	16.7	43
372	Observation of room-temperature high-energy resonant excitonic effects in graphene. <i>Physical Review B</i> , 2011 , 84,	3.3	43
371	Highly efficient dye-sensitized solar cells using phenothiazine derivative organic dyes. <i>Progress in Photovoltaics: Research and Applications</i> , 2010 , 18, 573-581	6.8	43
370	Observation of Gap Opening in 1T' Phase MoS Nanocrystals. <i>Nano Letters</i> , 2018 , 18, 5085-5090	11.5	42
369	Using the graphene Moir□ pattern for the trapping of C60 and homoepitaxy of graphene. <i>ACS Nano</i> , 2012 , 6, 944-50	16.7	42
368	Optimizing biosensing properties on undecylenic Acid-functionalized diamond. <i>Langmuir</i> , 2007 , 23, 582	.4 ₄ 30	42
368 367	Optimizing biosensing properties on undecylenic Acid-functionalized diamond. <i>Langmuir</i> , 2007 , 23, 582 Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. <i>Diamond and Related Materials</i> , 2005 , 14, 426-431	3·5	42
	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond		42
367	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. <i>Diamond and Related Materials</i> , 2005 , 14, 426-431 Exploring Ferroelectric Switching in <code>Hn2Se3</code> for Neuromorphic Computing. <i>Advanced Functional</i>	3.5	42
367 366	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. <i>Diamond and Related Materials</i> , 2005 , 14, 426-431 Exploring Ferroelectric Switching in £n2Se3 for Neuromorphic Computing. <i>Advanced Functional Materials</i> , 2020 , 30, 2004609 Controlled Growth of 1D MoSe Nanoribbons with Spatially Modulated Edge States. <i>Nano Letters</i> ,	3·5 15.6	42
367 366 365	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. <i>Diamond and Related Materials</i> , 2005 , 14, 426-431 Exploring Ferroelectric Switching in £n2Se3 for Neuromorphic Computing. <i>Advanced Functional Materials</i> , 2020 , 30, 2004609 Controlled Growth of 1D MoSe Nanoribbons with Spatially Modulated Edge States. <i>Nano Letters</i> , 2017 , 17, 1116-1120 Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks.	3.5 15.6 11.5	42 42 41
367 366 365 364	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. <i>Diamond and Related Materials</i> , 2005 , 14, 426-431 Exploring Ferroelectric Switching in <code>Bn2Se3</code> for Neuromorphic Computing. <i>Advanced Functional Materials</i> , 2020 , 30, 2004609 Controlled Growth of 1D MoSe Nanoribbons with Spatially Modulated Edge States. <i>Nano Letters</i> , 2017 , 17, 1116-1120 Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. <i>CheM</i> , 2019 , 5, 1223-1234	3.5 15.6 11.5	42 42 41 41
367 366 365 364 363	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. <i>Diamond and Related Materials</i> , 2005 , 14, 426-431 Exploring Ferroelectric Switching in £n2Se3 for Neuromorphic Computing. <i>Advanced Functional Materials</i> , 2020 , 30, 2004609 Controlled Growth of 1D MoSe Nanoribbons with Spatially Modulated Edge States. <i>Nano Letters</i> , 2017 , 17, 1116-1120 Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. <i>CheM</i> , 2019 , 5, 1223-1234 In Situ Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid Electrolyte Interface of Reduced Graphene Oxide. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2600-2608 Diamond-based molecular platform for photoelectrochemistry. <i>Journal of the American Chemical</i>	3.5 15.6 11.5 16.2 3.8	42 42 41 41 41

359	Room-temperature ice growth on graphite seeded by nano-graphene oxide. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8708-12	16.4	40
358	Fluorescent nanogel of arsenic sulfide nanoclusters. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6282-5	16.4	40
357	Surface oxygenation studies on ()-oriented diamond using an atom beam source and local anodic oxidation. <i>Surface Science</i> , 2002 , 505, 93-114	1.8	40
356	Edge Segregated Polymorphism in 2D Molybdenum Carbide. <i>Advanced Materials</i> , 2019 , 31, e1808343	24	40
355	Temperature- and Phase-Dependent Phonon Renormalization in 1T'-MoS. ACS Nano, 2018, 12, 5051-50	58 6.7	39
354	2D Perovskites with Giant Excitonic Optical Nonlinearities for High-Performance Sub-Bandgap Photodetection. <i>Advanced Materials</i> , 2019 , 31, e1904155	24	39
353	Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2014 , 19, 629-42	5.4	39
352	Electrochemical performance of graphene and copper oxide composites synthesized from a metalBrganic framework (Cu-MOF). <i>RSC Advances</i> , 2013 , 3, 19051	3.7	39
351	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. <i>Physical Review B</i> , 2013 , 88,	3.3	39
350	Large Area Synthesis of 1D-MoSe Using Molecular Beam Epitaxy. <i>Advanced Materials</i> , 2017 , 29, 160564	124	38
349	Strain Modulation by van der Waals Coupling in Bilayer Transition Metal Dichalcogenide. <i>ACS Nano</i> , 2018 , 12, 1940-1948	16.7	37
348	Growth of monodispersed cobalt nanoparticles on 6HBiC(0001) honeycomb template. <i>Applied Physics Letters</i> , 2004 , 84, 281-283	3.4	37
347	Surface modification studies of edge-oriented molybdenum sulfide nanosheets. <i>Langmuir</i> , 2004 , 20, 6914-20	4	37
346	The evolution of R30° and 6BBBR30° superstructures on 6HBiC (0001) surfaces studied by reflection high energy electron diffraction. <i>Surface Science</i> , 2001 , 478, 57-71	1.8	37
345	Ultrafast charge/discharge solid-state thin-film supercapacitors via regulating the microstructure of transition-metal-oxide. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2759-2767	13	36
344	Can Reconstructed Se-Deficient Line Defects in Monolayer VSe Induce Magnetism?. <i>Advanced Materials</i> , 2020 , 32, e2000693	24	36
343	Oscillating edge states in one-dimensional MoS nanowires. <i>Nature Communications</i> , 2016 , 7, 12904	17.4	36
342	Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors 2019 , 1, 327-335		36

(2003-2019)

341	Highly Stable Two-Dimensional Tin(II) Iodide Hybrid OrganicIhorganic Perovskite Based on Stilbene Derivative. <i>Advanced Functional Materials</i> , 2019 , 29, 1904810	15.6	36
340	Ultrafast All-Optical Modulation in 2D Hybrid Perovskites. <i>ACS Nano</i> , 2019 , 13, 9504-9510	16.7	36
339	Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite. <i>Nanotechnology</i> , 2010 , 21, 415203	3.4	36
338	Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption. <i>Applied Physics Letters</i> , 2005 , 87, 243105	3.4	36
337	Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. <i>Nature Materials</i> , 2020 , 19, 292-298	27	35
336	Noncovalent Self-Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions. <i>Advanced Materials</i> , 2016 , 28, 631-9	24	35
335	Molten salt method of preparation and cathodic studies on layered-cathode materials Li(Co0.7Ni0.3)O2 and Li(Ni0.7Co0.3)O2 for Li-ion batteries. <i>Journal of Power Sources</i> , 2013 , 225, 374-38	1 ^{8.9}	35
334	Electrical measurement of non-destructively p-type doped graphene using molybdenum trioxide. <i>Applied Physics Letters</i> , 2011 , 99, 012112	3.4	35
333	Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer. <i>Optics Express</i> , 2010 , 18, 25928-35	3.3	35
332	Self-Powered Photodetector Using Two-Dimensional Ferroelectric Dion-Jacobson Hybrid Perovskites. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18592-18598	16.4	35
331	Photoactive PDI-cobalt complex immobilized on reduced graphene oxide for photoelectrochemical water splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 880-6	9.5	34
330	The chemistry of C-H bond activation on diamond. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1532-40	4.5	34
329	Oxygen-Terminated Nanocrystalline Diamond Film as an Efficient Anode in Photovoltaics. <i>Advanced Functional Materials</i> , 2010 , 20, 1313-1318	15.6	34
328	Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis. <i>Nanotechnology</i> , 2006 , 17, 483-488	3.4	34
327	Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes. <i>Nanoscale</i> , 2014 , 6, 11246-58	7.7	33
326	Molecular Hemocompatibility of Graphene Oxide and Its Implication for Antithrombotic Applications. <i>Small</i> , 2015 , 11, 5105-17	11	33
325	Fluorescent Nanoparticles Comprising Amphiphilic Rod©oil Graft Copolymers. <i>Macromolecules</i> , 2008 , 41, 1438-1443	5.5	33
324	Low dielectric constant a-SiOC:H films as copper diffusion barrier. <i>Journal of Applied Physics</i> , 2003 , 93, 1241-1245	2.5	33

323	Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7-Fold to 8-Fold Interpenetrated Metal-Organic Frameworks (MOFs). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 833-838	16.4	33
322	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS. ACS Nano, 2020, 14, 4636-4645	16.7	32
321	Synthesis and electrical characterization of oligo(phenylene ethynylene) molecular wires coordinated to transition metal complexes. <i>ACS Nano</i> , 2009 , 3, 2103-14	16.7	32
320	Thermal stability of the negative electron affinity condition on cubic boron nitride. <i>Applied Physics Letters</i> , 1998 , 72, 3023-3025	3.4	32
319	Giant and Tunable Optical Nonlinearity in Single-Crystalline 2D Perovskites due to Excitonic and Plasma Effects. <i>Advanced Materials</i> , 2019 , 31, e1902685	24	31
318	Selective oxidation of cyclohexane over gold nanoparticles supported on mesoporous silica prepared in the presence of thioether functionality. <i>Catalysis Science and Technology</i> , 2011 , 1, 285	5.5	31
317	Silicon incorporation into chemical vapor deposition diamond: A role of oxygen. <i>Applied Physics Letters</i> , 1997 , 71, 629-631	3.4	31
316	Water-Induced Negative Electron Affinity on Diamond (100). <i>Journal of Physical Chemistry C</i> , 2008 , 112, 2487-2491	3.8	31
315	Novel iridium complexes as high-efficiency yellow and red phosphorescent light emitters for organic light-emitting diodes. <i>Tetrahedron</i> , 2008 , 64, 10814-10820	2.4	31
314	Surface-Limited Superconducting Phase Transition on 1 T-TaS. <i>ACS Nano</i> , 2018 , 12, 12619-12628	16.7	31
313	Dislocation-driven growth of two-dimensional lateral quantum-well superlattices. <i>Science Advances</i> , 2018 , 4, eaap9096	14.3	30
312	A graphene-like membrane with an ultrahigh water flux for desalination. <i>Nanoscale</i> , 2017 , 9, 18951-189	5,8 7	30
311	Supported Lipid Bilayer on Nanocrystalline Diamond: Dual Optical and Field-Effect Sensor for Membrane Disruption. <i>Advanced Functional Materials</i> , 2009 , 19, 109-116	15.6	30
310	Arsenic(II) sulfide quantum dots prepared by a wet process from its bulk. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11596-7	16.4	30
309	Nanoparticle dispersion on reconstructed carbon nanomeshes. <i>Langmuir</i> , 2004 , 20, 10779-84	4	30
308	Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones. <i>Applied Physics Letters</i> , 2004 , 85, 5388-5390	3.4	30
307	Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. <i>Advanced Materials</i> , 2020 , 32, e1906437	24	30
306	Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. <i>Light: Science and Applications</i> , 2020 , 9, 137	16.7	30

305	Large-Area Graphene Nanodot Array for Plasmon-Enhanced Infrared Spectroscopy. Small, 2016, 12, 13	02:-8	29	
304	Observing high-pressure chemistry in graphene bubbles. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 215-9	16.4	29	
303	Investigation of morphology and photoluminescence of hydrothermally grown ZnO nanorods on substrates pre-coated with ZnO nanoparticles. <i>Journal of Crystal Growth</i> , 2009 , 311, 1278-1284	1.6	29	
302	Tuning the electron affinity of CVD diamond with adsorbed caesium and oxygen layers. <i>Diamond and Related Materials</i> , 1997 , 6, 874-878	3.5	29	
301	C60 on SiC nanomesh. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21873-81	3.4	29	
300	Large-Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600077	6.4	29	
299	Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. <i>Advanced Materials</i> , 2019 , 31, e1804763	24	29	
298	Chemically polished lithium metal anode for high energy lithium metal batteries. <i>Energy Storage Materials</i> , 2018 , 14, 289-296	19.4	29	
297	Medical students' knowledge, perceptions, and interest in complementary and alternative medicine. <i>Journal of Alternative and Complementary Medicine</i> , 2013 , 19, 360-6	2.4	28	
296	The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications. <i>Carbon</i> , 2011 , 49, 4911-4919	10.4	28	
295	Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles. <i>Chemical Physics Letters</i> , 2004 , 387, 40-46	2.5	28	
294	A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. <i>Science Advances</i> , 2021 , 7,	14.3	28	
293	Spin-Valley Locking Effect in Defect States of Monolayer MoS. <i>Nano Letters</i> , 2020 , 20, 2129-2136	11.5	27	
292	From All-Triazine C3N3 Framework to Nitrogen-Doped Carbon Nanotubes: Efficient and Durable Trifunctional Electrocatalysts. <i>ACS Applied Nano Materials</i> , 2019 , 2, 7969-7977	5.6	27	
291	Localized insulator-conductor transformation of graphene oxide thin films via focused laser beam irradiation. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 523-531	2.6	27	
290	Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 236, 1-9	8.9	27	
289	CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties. <i>ACS Applied Materials & Distriction and State (Material & Distriction and State (Material & Distriction and State (Material & Distriction) and state (</i>	9.5	27	
288	Au nanoparticles dispersed on functionalized mesoporous silica for selective oxidation of cyclohexane. <i>Catalysis Today</i> , 2010 , 158, 220-227	5.3	27	

287	Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. <i>Analyst, The,</i> 2008 , 133, 448-51		27
286	A spectroscopic study of the negative electron affinity of cesium oxide-coated diamond (111) and theoretical calculation of the surface density-of-states on oxygenated diamond (111). <i>Diamond and Related Materials</i> , 2002 , 11, 1379-1384	5	27
285	Intercalated phases of transition metal dichalcogenides. <i>SmartMat</i> , 2020 , 1, e1013	2.8	27
284	A High-Performance Lithium Metal Battery with Ion-Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. <i>Advanced Materials</i> , 2021 , 33, e2006323	4	27
283	Single crystal of a one-dimensional metallo-covalent organic framework. <i>Nature Communications</i> , 2020 , 11, 1434	7.4	26
282	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018 , 30, e1802402	4	26
281	Two-Dimensional Conjugated Polymers Based on C-C Coupling. <i>Accounts of Chemical Research</i> , 2017 , 50, 522-526	4.3	25
280	Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition. <i>Nanoscale</i> , 2018 , 10, 3356-3361	7	25
279	Progress and prospects of aberration-corrected STEM for functional materials. <i>Ultramicroscopy</i> , 2018 , 194, 182-192	1	25
278	Supramolecular structure of self-assembled monolayers of ferrocenyl terminated n-alkanethiolates on gold surfaces. <i>Langmuir</i> , 2014 , 30, 13447-55		25
277	Valley Polarization of Trions and Magnetoresistance in Heterostructures of MoS and Yttrium Iron Garnet. <i>ACS Nano</i> , 2017 , 11, 12257-12265	5.7	25
276	Ultrathin Carbon with Interspersed Graphene/Fullerene-like Nanostructures: A Durable Protective Overcoat for High Density Magnetic Storage. <i>Scientific Reports</i> , 2015 , 5, 11607	.9	25
275	Chemical vapor deposition graphene as structural template to control interfacial molecular orientation of chloroaluminium phthalocyanine. <i>Applied Physics Letters</i> , 2011 , 99, 093301	4	25
274	CdSe/AsS core-shell quantum dots: preparation and two-photon fluorescence. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11300-1	5.4	25
273	Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications. <i>Applied Physics Letters</i> , 2004 , 84, 4331-4333	4	25
272	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. <i>Research</i> , 2020 , 2020, 9085782	.8	25
271	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15575-15579	3	24
270	Healing of Planar Defects in 2D Materials via Grain Boundary Sliding. <i>Advanced Materials</i> , 2019 , 31, e190@2	4 37	24

(2016-2017)

269	Nano-bio interactions between carbon nanomaterials and blood plasma proteins: why oxygen functionality matters. <i>NPG Asia Materials</i> , 2017 , 9, e422-e422	10.3	24
268	Theoretical and Experimental Studies of Electronic Transport of Dithienothiophene. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12530-12537	3.8	24
267	Homoepitaxial growth and hydrogen incorporation on the chemical vapor deposited (111) diamond. <i>Journal of Applied Physics</i> , 1999 , 86, 1306-1310	2.5	24
266	Intrinsic polarization coupling in 2D \oplus n2Se3 toward artificial synapse with multimode operations. <i>SmartMat</i> , 2021 , 2, 88-98	22.8	24
265	Photophysics of 2D Organic-Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. <i>Advanced Science</i> , 2021 , 8, 2001843	13.6	24
264	Site-selective alkene borylation enabled by synergistic hydrometallation and borometallation. <i>Nature Catalysis</i> , 2020 , 3, 585-592	36.5	23
263	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. <i>Nature Communications</i> , 2020 , 11, 1633	17.4	23
262	Stable Molecular Diodes Based on Interactions of the Molecular Frontier Orbitals with Graphene Electrodes. <i>Advanced Materials</i> , 2018 , 30, 1706322	24	23
261	"Quasi-freestanding" graphene-on-single walled carbon nanotube electrode for applications in organic light-emitting diode. <i>Small</i> , 2014 , 10, 944-9	11	23
2 60	Conductive polymer-modified boron-doped diamond for DNA hybridization analysis. <i>Chemical Physics Letters</i> , 2004 , 388, 483-487	2.5	23
259	Ab Initio Studies of Borazine and Benzene Cyclacenes and Their Fluoro-Substituted Derivatives. Journal of Physical Chemistry A, 2003 , 107, 5555-5560	2.8	23
258	Effect of oxygen addition on boron incorporation on semiconductive diamond CVD. <i>Diamond and Related Materials</i> , 1998 , 7, 1144-1147	3.5	23
257	Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. <i>Nature Chemistry</i> , 2020 , 12, 1115-1122	17.6	23
256	Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer. <i>ACS Applied Materials & District Action Section</i> , 8, 29496	- 29 503	23
255	Tunable broadband transmission and phase modulation of light through graphene multilayers. <i>Journal of Applied Physics</i> , 2014 , 115, 213102	2.5	22
254	Cerebral protection of purified Herba Leonuri extract on middle cerebral artery occluded rats. <i>Journal of Ethnopharmacology</i> , 2009 , 125, 337-43	5	22
253	Initial-stage oxidation mechanism of Ge(100)2¶ dimers. <i>Physical Review B</i> , 2005 , 72,	3.3	22
252	Substoichiometric Molybdenum Sulfide Phases with Catalytically Active Basal Planes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14121-14128	16.4	22

251	Two-dimensional tessellation by molecular tiles constructed from halogen-halogen and halogen-metal networks. <i>Nature Communications</i> , 2018 , 9, 4871	17.4	22
250	Phonon-Mediated Colossal Magnetoresistance in Graphene/Black Phosphorus Heterostructures. <i>Nano Letters</i> , 2018 , 18, 3377-3383	11.5	21
249	Patterning of graphene with tunable size and shape for microelectrode array devices. <i>Carbon</i> , 2014 , 67, 390-397	10.4	21
248	Copper phthalocyanine on hydrogenated and bare diamond (001)-2 x 1: influence of interfacial interactions on molecular orientations. <i>Langmuir</i> , 2010 , 26, 165-72	4	21
247	Surface structure of single-crystal cubic boron nitride (111) studied by LEED, EELS, and AES. <i>Physical Review B</i> , 1997 , 56, R12791-R12794	3.3	21
246	Highly textured, magnetic Fe(1+x)S nanorods grown on silicon. <i>Applied Physics Letters</i> , 2007 , 91, 08410	5 3.4	21
245	Hydrogen-induced surface structuring of a cubic boron nitride (100) face studied by low-energy electron diffraction and electron spectroscopic techniques. <i>Physical Review B</i> , 1998 , 57, 7266-7274	3.3	21
244	Whisper Gallery Modes in Monolayer Tungsten Disulfide-Hexagonal Boron Nitride Optical Cavity. <i>ACS Photonics</i> , 2018 , 5, 353-358	6.3	21
243	Anisotropic Third-Order Nonlinearity in Pristine and Lithium Hydride Intercalated Black Phosphorus. <i>ACS Photonics</i> , 2018 , 5, 4969-4977	6.3	21
242	First-principles study of the thermoelectric properties of strained graphene nanoribbons. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10762	13	20
241	Optical conductivity study of screening of many-body effects in graphene interfaces. <i>Europhysics Letters</i> , 2012 , 99, 67009	1.6	20
240	Ab initio studies of borazine and benzene cyclacenes. <i>Diamond and Related Materials</i> , 2003 , 12, 1194-13	20 ₉ 0 ₅	20
239	Atomic Scale Oxidation of Silicon Nanoclusters on Silicon Carbide Surfaces. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 11597-11603	3.4	20
238	Surface structure of C(100)[21] studied by a quantitative LEED analysis. <i>Physical Review B</i> , 1999, 59, 10347-10350	3.3	20
237	Optical conductivity renormalization of graphene on SrTiO3 due to resonant excitonic effects mediated by Ti 3d orbitals. <i>Physical Review B</i> , 2015 , 91,	3.3	19
236	Room temperature magnetic graphene oxide-iron oxide nanocomposite based magnetoresistive random access memory devices via spin-dependent trapping of electrons. <i>Small</i> , 2014 , 10, 1945-52	11	19
235	Quantum mechanical rippling of a MoS2 monolayer controlled by interlayer bilayer coupling. <i>Physical Review Letters</i> , 2015 , 114, 065501	7.4	19
234	High-efficiency solution processable electrophosphorescent iridium complexes bearing polyphenylphenyl dendron ligands. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 1317-1324	2.3	19

233	Nanocontact-induced catalytic activation in palladium nanoparticles. <i>Nanoscale</i> , 2009 , 1, 391-4	7.7	19
232	Whole cell environmental biosensor on diamond. <i>Analyst, The</i> , 2008 , 133, 739-43	5	19
231	Light scattering and luminescence studies on self-aggregation behavior of amphiphilic copolymer micelles. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 749-55	3.4	19
230	La2S3 thin films from metal organic chemical vapor deposition of single-source precursor. <i>Journal of Materials Chemistry</i> , 2006 , 16, 272-277		19
229	Graphene-Oxide-Catalyzed Cross-Dehydrogenative Coupling of Oxindoles with Arenes and Thiophenols. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 789-794	5.6	19
228	Interface Engineering of Au(111) for the Growth of 1T'-MoSe. ACS Nano, 2019, 13, 2316-2323	16.7	19
227	Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 31680-4	3.6	18
226	Strain dependence of the heat transport properties of graphene nanoribbons. <i>Nanotechnology</i> , 2012 , 23, 495702	3.4	18
225	Effect of LLT Coating on Elevated Temperature Cycle Life Performance of LiMn2O4Cathode Material. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A3144-A3147	3.9	18
224	Plasma synthesis of well-aligned carbon nanocones. <i>Diamond and Related Materials</i> , 2005 , 14, 902-906	3.5	18
223	Hollowing Mechanism of Zinc Sulfide Nanowires in Vacuum Induced by an Atomic Oxygen Beam. Journal of Physical Chemistry B, 2004 , 108, 9631-9637	3.4	18
222	Heterogeneous reaction route to CuInS2 thin films. <i>Chemical Communications</i> , 2002 , 1400-1401	5.8	18
221	Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions. <i>Applied Physics Letters</i> , 1998 , 73, 765-767	3.4	18
220	Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition. <i>Applied Physics Letters</i> , 1998 , 73, 2675-2677	3.4	18
219	Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. <i>Nature Communications</i> , 2020 , 11, 4722	17.4	18
218	Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donor-FAcceptor Organic Molecule Heterostructures. <i>Advanced Functional Materials</i> , 2020 , 30, 2005106	15.6	18
217	In Situ Synthesis of Lead-Free Halide Perovskite CsAgBiBr Supported on Nitrogen-Doped Carbon for Efficient Hydrogen Evolution in Aqueous HBr Solution. <i>ACS Applied Materials & Distriction amp; Interfaces</i> , 2021 , 13, 10037-10046	9.5	18
216	Elucidating Surface and Bulk Emission in 3D Hybrid OrganicIhorganic Lead Bromide Perovskites. Advanced Optical Materials, 2018, 6, 1800470	8.1	18

215	Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. <i>Nature Communications</i> , 2017 , 8, 677	17.4	17
214	Room Temperature Commensurate Charge Density Wave on Epitaxially Grown Bilayer 2H-Tantalum Sulfide on Hexagonal Boron Nitride. <i>ACS Nano</i> , 2020 , 14, 3917-3926	16.7	17
213	Malignant cardioinhibitory vasovagal syncope - an uncommon cardiovascular complication of Roux-en-Y gastric bypass surgery: the fainting syndrome!. <i>International Journal of Cardiology</i> , 2013 , 164, e38-9	3.2	17
212	Charge transport in lightly reduced graphene oxide: A transport energy perspective. <i>Journal of Applied Physics</i> , 2013 , 113, 063710	2.5	17
211	Highly efficient electroluminescent biphenylyl-substituted poly(p-phenylenevinylene)s through fine tuning the polymer structure. <i>Polymer</i> , 2006 , 47, 1820-1829	3.9	17
210	Linear relationship between H+-trapping reaction energy and defect generation: Insight into nitrogen-enhanced negative bias temperature instability. <i>Applied Physics Letters</i> , 2003 , 83, 530-532	3.4	17
209	Dense-Stacking Porous Conjugated Polymer as Reactive-Type Host for High-Performance Lithium Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11359-11369	16.4	17
208	Expedient synthesis of -hydrazone esters and 1-indazole scaffolds through heterogeneous single-atom platinum catalysis. <i>Science Advances</i> , 2019 , 5, eaay1537	14.3	17
207	Room Temperature Ferromagnetism of Monolayer Chromium Telluride with Perpendicular Magnetic Anisotropy. <i>Advanced Materials</i> , 2021 , 33, e2103360	24	17
206	Polaronic Trions at the MoS /SrTiO Interface. <i>Advanced Materials</i> , 2019 , 31, e1903569	24	16
205	Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. <i>Nano Energy</i> , 2020 , 70, 104482	17.1	16
204	Desalination properties of a free-standing, partially oxidized few-layer graphene membrane. <i>Desalination</i> , 2019 , 451, 72-80	10.3	16
203	Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells. <i>Applied Physics Letters</i> , 2009 , 95, 133305	3.4	16
202	Room temperature ferromagnetism at self-assembled monolayer modified Ag nanoclusterInO nanowire interface. <i>Applied Physics Letters</i> , 2008 , 93, 193111	3.4	16
201	Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond. <i>ChemPhysChem</i> , 2008 , 9, 1286-93	3.2	16
200	Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface. Nature Communications, 2020, 11, 5483	17.4	16
199	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 22042-22049	9.5	15
198	From hospital to community: use of antipsychotics in hospitalized elders. <i>Journal of Hospital Medicine</i> , 2014 , 9, 802-4	2.7	15

(2004-2017)

197	Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. <i>ACS Photonics</i> , 2017 , 4, 3055-3062	6.3	15	
196	Electronically transparent graphene barriers against unwanted doping of silicon. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 20464-72	9.5	15	
195	UV-visible-near infrared photoabsorption and photodetection using close-packed metallic gold nanoparticle network. <i>Journal of Applied Physics</i> , 2010 , 107, 053510	2.5	15	
194	Work function of (8,0) single-walled boron nitride nanotube at the open tube end. <i>Journal of Applied Physics</i> , 2006 , 99, 104309	2.5	15	
193	Tuning the electron affinity and secondary electron emission of diamond (100) surfaces by Diels-Alder reaction. <i>Langmuir</i> , 2007 , 23, 9722-7	4	15	
192	Hexagonally packed zinc oxide nanorod bundles on hydrotalcite sheets. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2508		15	
191	Trialkylammonium salts of [M(SC{O}R)4][M = Ga3+ and In3+) as precursors for metal sulfide thin films. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1149-1155		15	
190	Oxidation of the 3B 6H-SiC (0001) adatom cluster: A periodic density functional theory and dynamic rocking beam analysis. <i>Journal of Chemical Physics</i> , 2003 , 119, 4905-4915	3.9	15	
189	Enhancing charge-density-wave order in 1T-TiSe2 nanosheet by encapsulation with hexagonal boron nitride. <i>Applied Physics Letters</i> , 2016 , 109, 141902	3.4	15	
188	Room-Temperature Palladium-Catalyzed Deuterogenolysis of Carbon Oxygen Bonds towards Deuterated Pharmaceuticals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6357-6361	16.4	15	
187	Precise Single-Step Electrophoretic Multi-Sized Fractionation of Liquid-Exfoliated Nanosheets. <i>Advanced Functional Materials</i> , 2018 , 28, 1801622	15.6	15	
186	Large enhancement of thermoelectric performance in MoS/-BN heterostructure due to vacancy-induced band hybridization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13929-13936	11.5	14	
185	Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode. <i>Organic Electronics</i> , 2010 , 11, 1942-1946	3.5	14	
184	Surface studies of the reactivity of methyl, acetylene and atomic hydrogen at CVD diamond surfaces. <i>Surface Science</i> , 1998 , 399, 1-14	1.8	14	
183	Theoretical Study on Polyimide (100)/Ni(100) Adhesion. <i>Chemistry of Materials</i> , 2006 , 18, 5312-5316	9.6	14	
182	Cycloadditions on diamond (100) 2 x 1: observation of lowered electron affinity due to hydrocarbon adsorption. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5611-20	3.4	14	
181	A comparison study of cerebral protection using Ginkgo biloba extract and Losartan on stroked rats. <i>Neuroscience Letters</i> , 2006 , 398, 28-33	3.3	14	
180	A Surface Chemistry Route to Molybdenum Sulfide and Germanide Films Using the Single-Source Precursor Tetrakis(diethylaminodithiocarbomato)molybdate(IV). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17537-17545	3.4	14	

179	Negative electron affinity of cubic boron nitride. <i>Diamond and Related Materials</i> , 1999 , 8, 781-784	3.5	14
178	Hydrogen desorption and etching studies of cubic boron nitride surfaces. <i>Diamond and Related Materials</i> , 1999 , 8, 1296-1300	3.5	14
177	Hydrogen incorporation control in high quality homoepitaxial diamond (111) growth. <i>Diamond and Related Materials</i> , 1999 , 8, 1291-1295	3.5	14
176	Selective concentration-dependent manipulation of intrinsic fluorescence of plasma proteins by graphene oxide nanosheets. <i>RSC Advances</i> , 2016 , 6, 46558-46566	3.7	14
175	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 1842	1.7	14
174	Supramolecular Structure of the Monolayer Triggers Odd E ven Effects in the Tunneling Rates across Noncovalent Junctions on Graphene. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 4172-4180	3.8	13
173	Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries. <i>ACS Applied Materials & Enhanced Cyclability of Sodium-Ion Materials & Enhanced Cyclability of Sodium-Ion Batteries. ACS Applied Materials & Enhanced Cyclability of Sodium-Ion Batteries. ACS Applied Materials & Enhanced Cyclability of Sodium-Ion Batteries.</i>	9.5	13
172	Modulating Charge Density Wave Order in a 1T-TaS/Black Phosphorus Heterostructure. <i>Nano Letters</i> , 2019 , 19, 2840-2849	11.5	13
171	Surface Plasmon Enhanced Nitrogen-Doped Graphene Quantum Dot Emission by Single Bismuth Telluride Nanoplates. <i>Advanced Optical Materials</i> , 2017 , 5, 1700176	8.1	13
170	Large-Area, Periodic, Hexagonal Wrinkles on Nanocrystalline Graphitic Film. <i>Advanced Functional Materials</i> , 2015 , 25, 5492-5503	15.6	13
169	Wrapping graphene sheets around organic wires for making memory devices. Small, 2011, 7, 2372-8	11	13
168	A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent. <i>Chemical Communications</i> , 2011 , 47, 4153-5	5.8	13
167	Confocal Raman spectroscopic study of the heteroepitaxial diamond growth on Pt(111). <i>Diamond and Related Materials</i> , 1998 , 7, 783-788	3.5	13
166	Tailoring the Electron Affinity and Electron Emission of Diamond (100) 2 by Surface Functionalization Using an Organic Semiconductor. <i>Chemistry of Materials</i> , 2008 , 20, 6871-6879	9.6	13
165	High resolution electron energy loss spectroscopy study of clean, air-exposed and methanol-dosed Ge(100) surface. <i>Surface Science</i> , 2005 , 575, 51-59	1.8	13
164	Strain analysis in silicon substrates under uniaxial and biaxial stress by convergent beam electron diffraction. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2005 , 23, 940		13
163	Growth studies of thin film diamond using molecular beam techniques. <i>Diamond and Related Materials</i> , 1996 , 5, 231-235	3.5	13
162	Exploring Low Power and Ultrafast Memristor on p-Type van der Waals SnS. <i>Nano Letters</i> , 2021 , 21, 88	00£8 <i>8</i> ;0	7 13

(2015-2016)

161	Analyzing Dirac Cone and Phonon Dispersion in Highly Oriented Nanocrystalline Graphene. <i>ACS Nano</i> , 2016 , 10, 1681-9	16.7	12
160	Controllable Synthesis of 2D and 1D MoS2 Nanostructures on Au Surface. <i>Advanced Functional Materials</i> , 2017 , 27, 1603887	15.6	12
159	Empirical Model for Density and Length Prediction of ZnO Nanorods on GaN Using Hydrothermal Synthesis. <i>Journal of the Electrochemical Society</i> , 2007 , 154, K45	3.9	12
158	Direct observation of boron nitride nanocage growth by molecular beam nitridation and liquid-like motion of Fe B nanoparticles. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2573-2576		12
157	Reflection high-energy electron diffraction and low energy electron diffraction studies of the homoepitaxially grown diamond (111) and (001) surfaces. <i>Diamond and Related Materials</i> , 1999 , 8, 693-7	rðē	12
156	The interaction of azomethane with Si(100). Surface Science, 1995, 341, 92-102	1.8	12
155	Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery. <i>Advanced Materials</i> , 2021 , 33, e2102083	24	12
154	Single-Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. <i>Advanced Materials</i> , 2021 , e2103882	24	12
153	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions <i>ACS Nano</i> , 2022 ,	16.7	12
152	Graphene-Oxide-Catalyzed Direct CHIH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. <i>Angewandte Chemie</i> , 2018 , 130, 11014-11019	3.6	11
151	Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro. <i>Nanoscale</i> , 2017 , 9, 14065-14073	7.7	11
150	Negative differential resistance based on electron injection/extraction in conducting organic films. <i>Applied Physics Letters</i> , 2009 , 95, 063301	3.4	11
149	Aggregation Dependent S1 and S2 Dual Emissions of ThiopheneAcrylonitrileCarbazole Oligomer. <i>Crystal Growth and Design</i> , 2008 , 8, 2543-2546	3.5	11
148	Structure of Co deposited 6HBiC(0001). Surface Science, 2005, 595, 107-114	1.8	11
147	Surface morphology of homoepitaxially grown (111), (001), and (110) diamond studied by low energy electron diffraction and reflection high-energy electron diffraction. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1999 , 17, 2991-3002	2.9	11
146	From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. <i>Nano-Micro Letters</i> , 2021 , 13, 98	19.5	11
145	Iron Single Atom Catalyzed Quinoline Synthesis. <i>Advanced Materials</i> , 2021 , 33, e2101382	24	11
144	Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite. <i>Scientific Reports</i> , 2015 , 5, 11430	4.9	10

143	Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2020 , 59, 11527-11532	16.4	10
142	Electronic properties of graphene-single crystal diamond heterostructures. <i>Journal of Applied Physics</i> , 2013 , 114, 053709	2.5	10
141	Aggregates-induced dynamic negative differential resistance in conducting organic films. <i>Applied Physics Letters</i> , 2009 , 95, 203302	3.4	10
140	Distinguishing the H3 and T4 silicon adatom model on 6HBiC(0001) BBR30° reconstruction by dynamic rocking beam approach. <i>Journal of Chemical Physics</i> , 2003 , 119, 1789-1793	3.9	10
139	Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition. <i>2D Materials</i> , 2016 , 3, 021001	5.9	10
138	Anomalous Quantum Metal in a 2D Crystalline Superconductor with Electronic Phase Nonuniformity. <i>Nano Letters</i> , 2019 , 19, 4126-4133	11.5	9
137	Wrinkle-free graphene with spatially uniform electrical properties grown on hot-pressed copper. <i>Nano Research</i> , 2015 , 8, 1075-1080	10	9
136	Synthesis of Two-Dimensional Perovskite by Inverse Temperature Crystallization and Studies of Exciton States by Two-Photon Excitation Spectroscopy. <i>Advanced Functional Materials</i> , 2020 , 30, 20026	6 ^{15.6}	9
135	Photoelectron spectroscopy studies of barium films on diamond with respect to the modification of negative electron affinity characteristics. <i>Diamond and Related Materials</i> , 1998 , 7, 651-655	3.5	9
134	Chemisorption-Induced Polarization of Boron Nitride Nanotube. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10279-10286	3.8	9
133	Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: a switchable redox polymer with nitro functional groups. <i>Langmuir</i> , 2006 , 22, 3929-35	4	9
132	High resolution transmission electron microscopy study of the initial growth of diamond on silicon. <i>Diamond and Related Materials</i> , 2000 , 9, 1703-1707	3.5	9
131	Growth and mechanistic studies of diamond formation by chemical beam epitaxy using methyl and acetylene precursors. <i>Journal of Crystal Growth</i> , 1996 , 164, 208-213	1.6	9
130	Supported Gold Catalysts for Selective Oxidation of Organics. <i>Science of Advanced Materials</i> , 2011 , 3, 970-983	2.3	9
129	Hydrogen bond guided synthesis of close-packed one-dimensional graphdiyne on the Ag(111) surface. <i>Chemical Science</i> , 2019 , 10, 10849-10852	9.4	9
128	Studying Edge Defects of Hexagonal Boron Nitride Using High-Resolution Electron Energy Loss Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4189-93	6.4	8
127	The Origin of Dual Emission in Antiparallel-Stacked Two-Dimensional Covalent Organic Frameworks 2020 , 2, 654-657		8
126	Domain Engineering in ReS2 by Coupling Strain during Electrochemical Exfoliation. <i>Advanced Functional Materials</i> , 2020 , 30, 2003057	15.6	8

125	2D materials: Brightening the dark excitons. <i>Nature Nanotechnology</i> , 2017 , 12, 837-838	28.7	8
124	Growing suspended graphene on C60 molecules. <i>Small</i> , 2012 , 8, 3728-32	11	8
123	Two-probe study of hot carriers in reduced graphene oxide. <i>Journal of Applied Physics</i> , 2011 , 109, 08437	22 .5	8
122	Deposition of osmium and ruthenium thin films from organometallic cluster precursors. <i>Applied Organometallic Chemistry</i> , 2009 , 23, 196-199	3.1	8
121	Trap Levels in Graphene Oxide: A Thermally Stimulated Current Study. <i>ECS Solid State Letters</i> , 2012 , 2, M17-M19		8
120	Probing the interaction at the C60BiC nanomesh interface. <i>Surface Science</i> , 2007 , 601, 2994-3002	1.8	8
119	Chemisorption of C2 Biradical and Acetylene on Reconstructed Diamond(111)-(2 🗓). <i>Journal of Physical Chemistry B</i> , 2003 , 107, 985-993	3.4	8
118	Ultrathin oxide interfaces on 6HBiC formed by plasma hydrogenation: Ultra shallow depth profile study. <i>Journal of Applied Physics</i> , 2002 , 92, 5173-5176	2.5	8
117	Observation of a 6B superstructure on 6HBiC (0001) by reflection high energy electron diffraction. <i>Applied Physics Letters</i> , 2000 , 77, 3361-3363	3.4	8
116	Atomic hydrogen beam etching of carbon superstructures on 6H-SiC (0001) studied by reflection high-energy electron diffraction. <i>Diamond and Related Materials</i> , 2001 , 10, 1218-1223	3.5	8
115	Visualizing the Anomalous Charge Density Wave States in Graphene/NbSe Heterostructures. <i>Advanced Materials</i> , 2020 , 32, e2003746	24	8
114	Bose E instein oscillators and the excitation mechanism of free excitons in 2D layered organic I horganic perovskites. <i>RSC Advances</i> , 2017 , 7, 18366-18373	3.7	7
113	Self-cross-linked arrays enabled flexible mechanical sensors for monitoring the body tremor. <i>Npj Flexible Electronics</i> , 2020 , 4,	10.7	7
112	Compression-induced graphite nanoplatelets orientation in fibre-reinforced plastic composites. <i>Composites Part B: Engineering</i> , 2016 , 90, 493-502	10	7
111	Epitaxial Growth of Single-Layer Niobium Selenides with Controlled Stoichiometric Phases. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800429	4.6	7
110	A percolating membrane with superior polarization and power retention for rechargeable energy storage. <i>Advanced Materials</i> , 2012 , 24, 76-81, 75	24	7
109	Paraneoplastic autoimmune hemolytic anemia in ovarian cancer: a marker of disease activity. <i>Rare Tumors</i> , 2015 , 7, 5598	1.1	7
108	Polarizable energy-storage membrane based on ionic condensation and decondensation. <i>Energy and Environmental Science</i> , 2011 , 4, 3960	35.4	7

107	High resolution electron energy loss spectroscopy study of Zinc phthalocyanine and tetrafluoro tetracyanoquinodimethane on Au (111). <i>Chemical Physics Letters</i> , 2009 , 468, 28-31	2.5	7
106	Atomic study of molecular wires composed of thiophene oligomers. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2007 , 204, 1876-1881	1.6	7
105	High resolution electron energy loss and X-ray near edge absorption spectroscopic studies of diamond film functionalised with allyl alcohol. <i>Diamond and Related Materials</i> , 2006 , 15, 711-715	3.5	7
104	Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites <i>Nature Communications</i> , 2022 , 13, 138	17.4	7
103	Atomic-Level Electronic Properties of Carbon Nitride Monolayers. ACS Nano, 2020, 14, 14008-14016	16.7	7
102	Adenomas involving the extrahepatic biliary tree are rare but have an aggressive clinical course. <i>Endoscopy International Open</i> , 2016 , 4, E112-7	3	7
101	Analog and Digital Mode ⊞n2Se3 Memristive Devices for Neuromorphic and Memory Applications. <i>Advanced Electronic Materials</i> ,2100609	6.4	7
100	Ferroelectricity and Rashba effect in 2D organicIhorganic hybrid perovskites. <i>Trends in Chemistry</i> , 2021 , 3, 716-732	14.8	7
99	On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. <i>Journal of Applied Physics</i> , 2019 , 125, 230901	2.5	6
98	Elderly-onset neuromyelitis optica spectrum disorders. <i>Journal of the American Geriatrics Society</i> , 2015 , 63, 411-2	5.6	6
97	A Nanosegregant Approach to Superwettable and Water-Attracting Surfaces. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2187-2192	2.6	6
96	Study of negative-bias temperature-instability-induced defects using first-principle approach. <i>Applied Physics Letters</i> , 2003 , 83, 3063-3065	3.4	6
95	Para-Substituted Triphenylamine as a Catholyte for ZincDrganic Aqueous Redox Flow Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3612-3621	6.1	6
94	Networked Spin Cages: Tunable Magnetism and Lithium Ion Storage via Modulation of Spin-Electron Interactions. <i>Inorganic Chemistry</i> , 2016 , 55, 9892-9897	5.1	6
93	Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7-Fold to 8-Fold Interpenetrated Metal Drganic Frameworks (MOFs). <i>Angewandte Chemie</i> , 2020 , 132, 843-848	3.6	6
92	Atomic Imaging of Electrically Switchable Striped Domains in 🛭 In Se. Advanced Science, 2021 , 8, e210071	1 3 3.6	6
91	Orientation and Electronic Structures of Multilayered Graphene Nanoribbons Produced by Two-Zone Chemical Vapor Deposition. <i>Langmuir</i> , 2017 , 33, 10439-10445	4	5
90	Unusual Hole and Electron Midgap States and Orbital Reconstructions Induced Huge Ferroelectric Tunneling Electroresistance in BaTiO/SrTiO. <i>Nano Letters</i> , 2020 , 20, 1101-1109	11.5	5

(2021-2011)

89	Supercapacitive energy storage based on ion-conducting channels in hydrophilized organic network. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 1234-1240	2.6	5
88	Kinetics of the Initial Oxidation of the (0001) 6HBiC 3 B Reconstructed Surface. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16864-16868	3.8	5
87	Plasma deposition of low dielectric constant (k=2.2~2.4) Boron Nitride on methylsilsesquioxane-based nanoporous films. <i>Journal of Applied Physics</i> , 2004 , 96, 6679-6684	2.5	5
86	Deuterium-oxygen exchange on diamond (100) study by ERDA, RBS and TOF-SIMS. <i>Diamond and Related Materials</i> , 2002 , 11, 1385-1390	3.5	5
85	Two different domains in a cubic boron nitride (111) surface observed by friction force microscopy. <i>Applied Physics Letters</i> , 1998 , 73, 2733-2735	3.4	5
84	High-Yield Exfoliation of Monolayer 1T'-MoTe as Saturable Absorber for Ultrafast Photonics. <i>ACS Nano</i> , 2021 ,	16.7	5
83	Unveiling Atomic-Scale Moir Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers. <i>Nano Letters</i> , 2021 , 21, 3262-3270	11.5	5
82	Molecular engineered palladium single atom catalysts with an M-C1N3 subunit for Suzuki coupling. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11427-11432	13	5
81	Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS Grown on SrTiO. <i>ACS Nano</i> , 2020 ,	16.7	4
80	An Anomalous Magneto-Optic Effect in Epitaxial Indium Selenide Layers. <i>Nano Letters</i> , 2020 , 20, 5330-5	313185	4
79	Multiple virtual tunneling of Dirac fermions in granular graphene. Scientific Reports, 2013, 3, 3404	4.9	4
78	Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide. <i>Angewandte Chemie</i> , 2013 , 125, 8870-8874	3.6	4
77	A HREELS and DFT study of the adsorption of aromatic hydrocarbons on diamond (111). <i>Langmuir</i> , 2010 , 26, 3286-91	4	4
76	Ab initio studies of hydrogen and oxygen chemisorptions on the cubic BN(111) surface. <i>Surface Science</i> , 2005 , 599, 128-140	1.8	4
75	Dense-Stacking Porous Conjugated Polymer as Reactive-Type Host for High-Performance Lithium Sulfur Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 11460-11470	3.6	4
74	Local Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4003-4011	6.4	4
73	Multifunctional Properties of a Zn(II) Coordination Complex. Crystal Growth and Design, 2021, 21, 3401-3	3498	4
72	One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays 2021 , 3, 217-223		4

71	Liß Batteries: Nickel©obalt Double Hydroxide as a Multifunctional Mediator for Ultrahigh-Rate and Ultralong-Life Liß Batteries (Adv. Energy Mater. 35/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870	1212 ⁸	4
70	In-Plane Anisotropic Nonlinear Optical Properties of Two-Dimensional Organic-Inorganic Hybrid Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 7010-7018	6.4	4
69	Efficient and Anisotropic Second Harmonic Generation in Few-Layer SnS Film. <i>Advanced Optical Materials</i> ,2101200	8.1	4
68	Constructing ambivalent imidazopyridinium-linked covalent organic frameworks 2022 , 1, 382-392		4
67	Staging: Unraveling the Potassium Storage Mechanism in Graphite Foam (Adv. Energy Mater. 22/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970081	21.8	3
66	Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). <i>Angewandte Chemie</i> , 2020 , 132, 11624-11629	3.6	3
65	Visualization of Crystallographic Orientation and Twist Angles in Two-Dimensional Crystals with an Optical Microscope. <i>Nano Letters</i> , 2020 , 20, 6059-6066	11.5	3
64	Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications 2018 ,		3
63	Patientsmate ^r : the implementation and evaluation of an online prospective audit system. <i>Journal of Evaluation in Clinical Practice</i> , 2012 , 18, 365-8	2.5	3
62	Single-molecule chemical reactions tracked at the atomic-bond level. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13521-3	16.4	3
61	Graphene mode locked ultrafast fiber lasers 2011 ,		3
60	Effects and thermal stability of hydrogen microwave plasma treatment on tetrahedral amorphous carbon films by in situ ultraviolet photoelectron spectroscopy. <i>Journal of Applied Physics</i> , 2009 , 106, 024	<u>3</u> 61	3
59	New scenarios of charge transport in PEDT:PSS conducting polymer: From hole resonant tunneling to cationic motion and relaxation. <i>Organic Electronics</i> , 2010 , 11, 1432-1438	3.5	3
58	Spatial effect of C-H dipoles on the electron affinity of diamond (100)-2x1 adsorbed with organic molecules. <i>ChemPhysChem</i> , 2008 , 9, 1338-44	3.2	3
57	Zinc Oxide Nanorod Arrays: Properties and Hydrothermal Synthesis 2007 , 92-117		3
56	Reactive atom beam deposition of boron nitride ultrathin films and nanoparticles using borazine. <i>Diamond and Related Materials</i> , 2003 , 12, 1103-1107	3.5	3
55	Reduction of Local Mechanical Stress in a Transistor Using Si[sub 3]N[sub 4]/SiO[sub x]N[sub y] Contact ESL. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, G38		3
54	Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding <i>Nature Communications</i> , 2022 , 13, 794	17.4	3

(2022-2020)

53	Photocatalytic Hydrogen Evolution: Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donor-EAcceptor Organic Molecule Heterostructures (Adv. Funct. Mater. 43/2020). Advanced Functional Materials, 2020 , 30, 2070288	15.6	3	
52	Molecular Electronics: Noncovalent Self-Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions (Adv. Mater. 4/2016). <i>Advanced Materials</i> , 2016 , 28, 784-784	24	3	
51	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3	
50	Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites <i>Science Advances</i> , 2022 , 8, eabj0395	14.3	3	
49	Tissue Engineering: Fluorinated Graphene for Promoting Neuro-Induction of Stem Cells (Adv. Mater. 31/2012). <i>Advanced Materials</i> , 2012 , 24, 4284-4284	24	2	
48	Functionalization of Nanodiamond for Specific Biorecognition 2010 , 117-125		2	
47	Embedded organic hetero-junction and negative-differential-resistance photocurrent based on bias-assisted natural-drying of organic drops. <i>Organic Electronics</i> , 2010 , 11, 1543-1548	3.5	2	
46	Diamond growth chemistry: Its observation using real time in situ molecular beam scattering techniques. <i>Diamond and Related Materials</i> , 1997 , 6, 219-223	3.5	2	
45	Atomic force microscopy study of hexagonal boron nitride film growth on 6H-SiC (0001). <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, 37-45	1.6	2	
44	Reactive chemistry of C2Hx species on CVD diamond. <i>Diamond and Related Materials</i> , 1998 , 7, 243-246	3.5	2	
43	Coupling (reduced) Graphene Oxide to Mammalian Primary Cortical Neurons In Vitro. <i>AIMS Materials Science</i> , 2015 , 2, 217-229	1.9	2	
42	Controllable phase transitions between multiple charge density waves in monolayer 1T-VSe2 via charge doping. <i>Applied Physics Letters</i> , 2021 , 119, 163101	3.4	2	
41	Electron beam triggered single-atom dynamics in two-dimensional materials. <i>Journal of Physics Condensed Matter</i> , 2021 , 33, 063001	1.8	2	
40	Observation of Strong Valley Magnetic Response in Monolayer Transition Metal Dichalcogenide Alloys of MoWSe and MoWSe/WS Heterostructures. <i>ACS Nano</i> , 2021 , 15, 8397-8406	16.7	2	
39	Molybdenum Disulfid: Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy (Adv. Mater. 47/2018). <i>Advanced Materials</i> , 2018 , 30, 1870360	24	2	
38	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygen-Controlled Activity. <i>Advanced Functional Materials</i> ,2200933	15.6	2	
37	Data-driven discovery of high performance layered van der Waals piezoelectric NbOI <i>Nature Communications</i> , 2022 , 13, 1884	17.4	2	
36	Addressing the quantitative conversion bottleneck in single-atom catalysis <i>Nature Communications</i> , 2022 , 13, 2807	17.4	2	

35	Graphene Properties and Application 2014 , 565-583		1
34	Observing High-Pressure Chemistry in Graphene Bubbles. <i>Angewandte Chemie</i> , 2014 , 126, 219-223	3.6	1
33	Energy Storage: A Percolating Membrane with Superior Polarization and Power Retention for Rechargeable Energy Storage (Adv. Mater. 1/2012). <i>Advanced Materials</i> , 2012 , 24, 75-75	24	1
32	Enhanced efficiency of phenothiazine derivative organic dye-sensitized ionic liquid solar cells on aging. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 525-533	6.8	1
31	Controlled Growth of Graphene Crystals by Chemical Vapor Deposition: From Solid Metals to Liquid Me	etals23	81256
30	An unusual cause of delirium and debility: refractory hypercalcemia in a man with B-cell prolymphocytic leukemia. <i>Journal of the American Geriatrics Society</i> , 2014 , 62, 2021-2	5.6	1
29	Atomic multi-layer graphene for dissipative soliton generation in Ytterbium-doped fiber laser 2010,		1
28	Vertically Aligned Single Crystalline ZnO Nanorods Grown by Hydrothermal Synthesis and the Theoretical Model for Predicting the Rod Density. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		1
27	Growth of Co Nanoclusters on SiC Honeycomb Templates. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 818, 305		1
26	Ferromagnetic dot encapsulated Boron Nitride nano-structured arrays. <i>Diamond and Related Materials</i> , 2004 , 13, 1116-1119	3.5	1
25	SURFACE CHARACTERISTICS OF THICK, FREE-STANDING DIAMOND FILM PREPARED BY CHEMICAL ETCHING AND RAPID THERMAL PROCESSING. <i>Surface Review and Letters</i> , 2001 , 08, 477-482	1.1	1
24	Transient Reflection Spectroscopy on Ultrafast Interlayer Charge Transfer Processes in a MoS2/WSe2 van der Waals Heterojunction. <i>Journal of Physical Chemistry C</i> ,	3.8	1
23	Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping. <i>Chinese Chemical Letters</i> , 2021 , 33, 368-368	8.1	1
22	Graphene Photodetectors: Large-Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector (Adv. Electron. Mater. 5/2016). Advanced Electronic Materials, 2016 , 2,	6.4	1
21	Nanocrystalline diamond film grown by pulsed linear antenna microwave CVD. <i>Diamond and Related Materials</i> , 2021 , 119, 108576	3.5	1
20	Sub-Angstrom Imaging of Nondegenerate Kekul Structures in a Two-Dimensional Halogen-Bonded Supramolecular Network. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 4241-4247	3.8	1
19	Learning motifs and their hierarchies in atomic resolution microscopy Science Advances, 2022, 8, eabk	10:0453	1
18	Education and imaging. Gastrointestinal: Incidentally detected gastric carcinoma in patient with common variable immunoglobulin deficiency. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2014 , 29, 1127	4	O

LIST OF PUBLICATIONS

An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery. Energy Storage Materials, 2022, 49, 1-10 Nonconvulsive status epilepticus: master of disguise. Journal of the American Geriatrics Society, 2015, 63, 1038-9 Molecular Diodes: Stable Molecular Diodes Based on Ilnteractions of the Molecular Frontier Orbitals with Graphene Electrodes (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870069 Dislocation-Driven Growth of Two-Dimensional Lateral Quantum Well Superlattices. Microscopy and Microanalysis, 2018, 24, 88-89 Engineering and Modifying Two-Dimensional Materials via Electron Beams. Microscopy and Microanalysis, 2019, 25, 1474-1475 Abnormal behavior of potassium adsorbed phosphorene. International Journal of Computational Materials Science and Engineering, 2017, 06, 1850002 Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 Innenföktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Levaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2	17	Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. <i>Nano Research</i> ,1	10	О	
Molecular Diodes: Stable Molecular Diodes Based on Interactions of the Molecular Frontier Orbitals with Graphene Electrodes (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870069 Dislocation-Driven Growth of Two-Dimensional Lateral Quantum Well Superlattices. Microscopy and Microanalysis, 2018, 24, 88-89 Engineering and Modifying Two-Dimensional Materials via Electron Beams. Microscopy and Microanalysis, 2019, 25, 1474-1475 Abnormal behavior of potassium adsorbed phosphorene. International Journal of Computational Materials Science and Engineering, 2017, 06, 1850002 Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 InnentEktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65	16		19.4	О	
Dislocation-Driven Growth of Two-Dimensional Lateral Quantum Well Superlattices. <i>Microscopy and Microanalysis</i> , 2018, 24, 88-89 Engineering and Modifying Two-Dimensional Materials via Electron Beams. <i>Microscopy and Microanalysis</i> , 2019, 25, 1474-1475 Abnormal behavior of potassium adsorbed phosphorene. <i>International Journal of Computational Materials Science and Engineering</i> , 2017, 06, 1850002 Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). <i>Advanced Functional Materials</i> , 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). <i>Small</i> , 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. <i>Procedia Engineering</i> , 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. <i>Advanced Materials Research</i> , 2012, 545, 21-26 Innenriktitebild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). <i>Angewandte Chemie</i> , 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. <i>Angewandte Chemie</i> , 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. <i>Materials Research Society Symposia Proceedings</i> , 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. <i>Materials Research Society Symposia Proceedings</i> , 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. <i>Advances in Synchrotron Radiation</i> , 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	15		5.6		
Engineering and Modifying Two-Dimensional Materials via Electron Beams. Microscopy and Microanalysis, 2019, 25, 1474-1475 Abnormal behavior of potassium adsorbed phosphorene. International Journal of Computational Materials Science and Engineering, 2017, 06, 1850002 Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 Innenräktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Untersuchung of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	14		24		
Abnormal behavior of potassium adsorbed phosphorene. International Journal of Computational Materials Science and Engineering, 2017, 06, 1850002 Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 Innenrüktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	13		0.5		
 Materials Science and Engineering, 2017, 06, 1850002 Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 Innenr\(\begin{align*} \text{Innenr\(\beta\)} Innenr\(\b	12		0.5		
Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730 Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727 Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 Innenräktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	11	· · · · · · · · · · · · · · · · · · ·	0.3		
Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588 Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 InnenrEktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	10		15.6		
Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 2012, 545, 21-26 Innenröktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	9	Graphene: Growing Suspended Graphene on C60 Molecules (Small 24/2012). Small, 2012, 8, 3727-3727	11		
Innenriiktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8915-8915 Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	8				
Untersuchung chemischer Reaktionen von Einzelmoleklen auf der Ebene der atomaren Bindung. Angewandte Chemie, 2013, 125, 13763-13765 Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	7		0.5		
Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	6		3.6		
 Materials Research Society Symposia Proceedings, 2006, 965, 1 Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and 	5		3.6		
Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1 Fe-INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	4				
Advances in Synchrotron Radiation, 2008, 01, 59-65 Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and	3				
	2				
	1		2.7		