KianPing Loh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	6.6	8,051
2	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	6.6	2,966
3	Atomic‣ayer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 2009, 19, 3077-3083.	7.8	2,310
4	Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano, 2012, 6, 3677-3694.	7.3	1,749
5	Hydrothermal Dehydration for the "Green―Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009, 21, 2950-2956.	3.2	1,430
6	The chemistry of graphene. Journal of Materials Chemistry, 2010, 20, 2277.	6.7	1,350
7	One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 2009, 3, 2367-2375.	7.3	1,093
8	Molybdenum disulfide (MoS_2) as a broadband saturable absorber for ultra-fast photonics. Optics Express, 2014, 22, 7249.	1.7	1,008
9	Broadband graphene polarizer. Nature Photonics, 2011, 5, 411-415.	15.6	961
10	Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide. ACS Nano, 2011, 5, 7334-7341.	7.3	953
11	Electrocatalytically Active Graphene–Porphyrin MOF Composite for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 6707-6713.	6.6	951
12	A Graphene Oxide and Copperâ€Centered Metal Organic Framework Composite as a Triâ€Functional Catalyst for HER, OER, and ORR. Advanced Functional Materials, 2013, 23, 5363-5372.	7.8	858
13	Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 2014, 5, 3689.	5.8	735
14	Solution-Gated Epitaxial Graphene as pH Sensor. Journal of the American Chemical Society, 2008, 130, 14392-14393.	6.6	675
15	High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5, 2995.	5.8	655
16	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2018, 2, .	13.8	631
17	Transforming C60 molecules into graphene quantum dots. Nature Nanotechnology, 2011, 6, 247-252.	15.6	587
18	High-Yield Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte. Journal of the American Chemical Society, 2011, 133, 8888-8891.	6.6	539

#	Article	IF	CITATIONS
19	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3, 1298.	5.8	538
20	Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011, 5, 9927-9933.	7.3	529
21	Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Optics Express, 2009, 17, 17630.	1.7	512
22	Interface Engineering of Layerâ€by‣ayer Stacked Graphene Anodes for Highâ€Performance Organic Solar Cells. Advanced Materials, 2011, 23, 1514-1518.	11.1	489
23	Reversible multi-electron redox chemistry ofÂï€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	19.8	486
24	Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 2013, 46, 2275-2285.	7.6	477
25	Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters, 2010, 96, .	1.5	456
26	High Mobility, Printable, and Solution-Processed Graphene Electronics. Nano Letters, 2010, 10, 92-98.	4.5	455
27	Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Applied Physics Letters, 2009, 95, .	1.5	450
28	Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics. Advanced Functional Materials, 2010, 20, 782-791.	7.8	434
29	Electrochemical Double-Layer Capacitance of MoS[sub 2] Nanowall Films. Electrochemical and Solid-State Letters, 2007, 10, A250.	2.2	412
30	Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4, 297-307.	5.8	408
31	Structure-Directing Role of Graphene in the Synthesis of Metalâ^'Organic Framework Nanowire. Journal of the American Chemical Society, 2010, 132, 14487-14495.	6.6	403
32	Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters, 2009, 95, .	1.5	394
33	Face-to-face transfer of wafer-scale graphene films. Nature, 2014, 505, 190-194.	13.7	386
34	Controlling many-body states by the electric-field effect in a two-dimensional material. Nature, 2016, 529, 185-189.	13.7	385
35	Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy and Environmental Science, 2013, 6, 2093.	15.6	348
36	Atomic layer deposition of a MoS ₂ film. Nanoscale, 2014, 6, 10584-10588.	2.8	335

#	Article	IF	CITATIONS
37	Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Advanced Materials, 2019, 31, e1900341.	11.1	320
38	Fluorinated Graphene for Promoting Neuroâ€Induction of Stem Cells. Advanced Materials, 2012, 24, 4285-4290.	11.1	315
39	Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Advanced Materials, 2010, 22, 67-71.	11.1	311
40	A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nature Chemistry, 2017, 9, 563-570.	6.6	306
41	Direct Synthesis of Largeâ€Area 2D Mo ₂ C on In Situ Grown Graphene. Advanced Materials, 2017, 29, 1700072.	11.1	305
42	A Graphene Oxide–Organic Dye Ionic Complex with DNAâ€5ensing and Opticalâ€Limiting Properties. Angewandte Chemie - International Edition, 2010, 49, 6549-6553.	7.2	304
43	Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914.	13.3	295
44	Multilayer Hybrid Films Consisting of Alternating Graphene and Titania Nanosheets with Ultrafast Electron Transfer and Photoconversion Properties. Advanced Functional Materials, 2009, 19, 3638-3643.	7.8	294
45	α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale, 2012, 4, 2958.	2.8	273
46	Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light. Green Chemistry, 2011, 13, 3341.	4.6	268
47	Graphene-Based SELDI Probe with Ultrahigh Extraction and Sensitivity for DNA Oligomer. Journal of the American Chemical Society, 2010, 132, 10976-10977.	6.6	264
48	High-Throughput Synthesis of Graphene by Intercalationâ^'Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor. ACS Nano, 2009, 3, 3587-3594.	7.3	263
49	Chemical Vapor Deposition of Large-Size Monolayer MoSe ₂ Crystals on Molten Glass. Journal of the American Chemical Society, 2017, 139, 1073-1076.	6.6	258
50	Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4, 1035-1053.	11.7	257
51	Chemically Exfoliated VSe ₂ Monolayers with Roomâ€Temperature Ferromagnetism. Advanced Materials, 2019, 31, e1903779.	11.1	251
52	Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy, 2019, 61, 54-59.	8.2	243
53	Magnetic Molybdenum Disulfide Nanosheet Films. Nano Letters, 2007, 7, 2370-2376.	4.5	239
54	Direct Voltammetric Detection of DNA and pH Sensing on Epitaxial Graphene: An Insight into the Role of Oxygenated Defects. Analytical Chemistry, 2010, 82, 7387-7393.	3.2	235

#	Article	IF	CITATIONS
55	When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials, 2018, 155, 236-250.	5.7	232
56	Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Optics Letters, 2010, 35, 3622.	1.7	230
57	Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9, 2335.	5.8	230
58	Synthesis and reduction of large sized graphene oxide sheets. Chemical Society Reviews, 2017, 46, 7306-7316.	18.7	221
59	Direct Observation of Single-Walled Carbon Nanotube Growth at the Atomistic Scale. Nano Letters, 2006, 6, 449-452.	4.5	217
60	Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. ACS Nano, 2016, 10, 9208-9215.	7.3	216
61	Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion. Laser Physics Letters, 0, 7, 591-596.	0.6	214
62	Dynamical Observation of Bamboo-like Carbon Nanotube Growth. Nano Letters, 2007, 7, 2234-2238.	4.5	213
63	Two-dimensional dichalcogenides for light-harvesting applications. Nano Today, 2015, 10, 128-137.	6.2	208
64	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chemical Communications, 2018, 54, 2349-2352.	2.2	205
65	Li Storage and Impedance Spectroscopy Studies on Co ₃ O ₄ , CoO, and CoN for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 680-690.	4.0	200
66	Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers. ACS Catalysis, 2016, 6, 3594-3599.	5.5	195
67	Atomic Healing of Defects in Transition Metal Dichalcogenides. Nano Letters, 2015, 15, 3524-3532.	4.5	194
68	Growth of Bismuth Sulfide Nanowire Using Bismuth Trisxanthate Single Source Precursors. Chemistry of Materials, 2003, 15, 4544-4554.	3.2	192
69	Engineering covalently bonded 2D layered materials by self-intercalation. Nature, 2020, 581, 171-177.	13.7	185
70	Atomic structure of the 6H–SiC(0001) nanomesh. Surface Science, 2005, 596, 176-186.	0.8	179
71	Ultrafast charge transfer in MoS ₂ /WSe ₂ p–n Heterojunction. 2D Materials, 2016, 3, 025020.	2.0	179
72	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8, 14548.	5.8	174

#	Article	IF	CITATIONS
73	Chemical Stabilization of 1T′ Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. Journal of the American Chemical Society, 2017, 139, 2504-2511.	6.6	171
74	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	3.2	169
75	Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications, 2019, 10, 41.	5.8	168
76	Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. Journal of the American Chemical Society, 2017, 139, 9392-9400.	6.6	167
77	From bulk to molecularly thin hybrid perovskites. Nature Reviews Materials, 2020, 5, 482-500.	23.3	164
78	Molecular-Beam Epitaxy of Two-Dimensional In ₂ Se ₃ and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. Nano Letters, 2018, 18, 6340-6346.	4.5	163
79	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	11.1	163
80	One- and Two-Photon Turn-on Fluorescent Probe for Cysteine and Homocysteine with Large Emission Shift. Organic Letters, 2009, 11, 1257-1260.	2.4	159
81	Transforming moiré blisters into geometric graphene nano-bubbles. Nature Communications, 2012, 3, 823.	5.8	157
82	Electrochemical Impedance Sensing of DNA Hybridization on Conducting Polymer Film-Modified Diamond. Journal of Physical Chemistry B, 2005, 109, 13611-13618.	1.2	153
83	Chemical Vapor Deposition of Large‣ized Hexagonal WSe ₂ Crystals on Dielectric Substrates. Advanced Materials, 2015, 27, 6722-6727.	11.1	152
84	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25147-25154.	4.0	152
85	Optimizing Label-Free DNA Electrical Detection on Graphene Platform. Analytical Chemistry, 2011, 83, 2452-2460.	3.2	151
86	Highâ€Performance Broadband Photodetector Using Solutionâ€Processible PbSe–TiO ₂ –Graphene Hybrids. Advanced Materials, 2012, 24, 1697-1702.	11.1	151
87	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017, 139, 8897-8904.	6.6	151
88	A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nature Communications, 2018, 9, 76.	5.8	151
89	Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. Advanced Materials, 2018, 30, e1802368.	11.1	149
90	Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework. Journal of the American Chemical Society, 2018, 140, 12922-12929.	6.6	147

#	Article	IF	CITATIONS
91	Polarized Emission and Optical Waveguide in Crystalline Perylene Diimide Microwires. Advanced Materials, 2010, 22, 3661-3666.	11.1	146
92	Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 1970-1977.	4.5	144
93	Polymer Brushes on Graphene. Journal of the American Chemical Society, 2011, 133, 10490-10498.	6.6	142
94	Energy Storage Studies on InVO ₄ as High Performance Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 7777-7785.	4.0	142
95	Removal of microcystin-LR and microcystin-RR by graphene oxide: Adsorption and kinetic experiments. Water Research, 2013, 47, 4621-4629.	5.3	139
96	Vector dissipative solitons in graphene mode locked fiber lasers. Optics Communications, 2010, 283, 3334-3338.	1.0	138
97	Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nature Communications, 2013, 4, 2681.	5.8	138
98	Biosensing Properties of Diamond and Carbon Nanotubes. Langmuir, 2004, 20, 5484-5492.	1.6	137
99	Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Optics Express, 2013, 21, 10010.	1.7	135
100	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	10.2	133
101	A Bioelectronic Platform Using a Grapheneâ^Lipid Bilayer Interface. ACS Nano, 2010, 4, 7387-7394.	7.3	132
102	Highâ€Gain Grapheneâ€Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Advanced Materials, 2010, 22, 5265-5270.	11,1	131
103	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ PbI ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	7.3	130
104	High-performance NaFePO ₄ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4882-4892.	5.2	129
105	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. Nano Letters, 2019, 19, 5109-5117.	4.5	129
106	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e190	58 79. 1	129
107	Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks – from 3D solids to 2D sheets. Chemical Society Reviews, 2020, 49, 4835-4866.	18.7	129
108	Chemical Vapor Deposition of Highâ€Quality Largeâ€Sized MoS ₂ Crystals on Silicon Dioxide Substrates. Advanced Science, 2016, 3, 1500033.	5.6	128

#	Article	IF	CITATIONS
109	Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Applied Physics Letters, 2011, 98, .	1.5	126
110	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	6.6	126
111	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	5.8	123
112	Leonurine Protects Middle Cerebral Artery Occluded Rats Through Antioxidant Effect and Regulation of Mitochondrial Function. Stroke, 2010, 41, 2661-2668.	1.0	120
113	Exploring Ferroelectric Switching in αâ€In ₂ Se ₃ for Neuromorphic Computing. Advanced Functional Materials, 2020, 30, 2004609.	7.8	119
114	Using Detonation Nanodiamond for the Specific Capture of Glycoproteins. Analytical Chemistry, 2008, 80, 4659-4665.	3.2	118
115	Plasmon dispersion on epitaxial graphene studied using high-resolution electron energy-loss spectroscopy. Physical Review B, 2009, 80, .	1.1	118
116	Tandem Catalysis of Amines Using Porous Graphene Oxide. Journal of the American Chemical Society, 2015, 137, 685-690.	6.6	118
117	Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4. RSC Advances, 2012, 2, 9619.	1.7	117
118	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017, 17, 4122-4129.	4.5	117
119	Engineering Bandgaps of Monolayer MoS ₂ and WS ₂ on Fluoropolymer Substrates by Electrostatically Tuned Manyâ€Body Effects. Advanced Materials, 2016, 28, 6457-6464.	11.1	116
120	Exciton–Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles. Advanced Materials, 2016, 28, 2709-2715.	11.1	115
121	Graphene and Graphene-like Molecules: Prospects in Solar Cells. Journal of the American Chemical Society, 2016, 138, 1095-1102.	6.6	115
122	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li–Organic Batteries. ACS Energy Letters, 2020, 5, 3498-3506.	8.8	114
123	Microlandscaping of Au Nanoparticles on Few-Layer MoS ₂ Films for Chemical Sensing. Small, 2015, 11, 1792-1800.	5.2	113
124	Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nature Nanotechnology, 2018, 13, 828-834.	15.6	113
125	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic–Inorganic Perovskite. Journal of the American Chemical Society, 2019, 141, 15972-15976.	6.6	113
126	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	7.3	112

#	Article	IF	CITATIONS
127	Controlled growth of ultrathin Mo ₂ C superconducting crystals on liquid Cu surface. 2D Materials, 2017, 4, 011012.	2.0	112
128	Toward High Throughput Interconvertible Graphane-to-Graphene Growth and Patterning. ACS Nano, 2010, 4, 6146-6152.	7.3	109
129	Graphene as Atomic Template and Structural Scaffold in the Synthesis of Grapheneâ^'Organic Hybrid Wire with Photovoltaic Properties. ACS Nano, 2010, 4, 6180-6186.	7.3	109
130	Cell-Assembled Graphene Biocomposite for Enhanced Chondrogenic Differentiation. Small, 2015, 11, 963-969.	5.2	109
131	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 2022, 16, 8213-8222.	7.3	109
132	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. Chemistry of Materials, 2018, 30, 5743-5749.	3.2	108
133	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	5.8	108
134	Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel. Nano Letters, 2011, 11, 5240-5246.	4.5	106
135	In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. ACS Nano, 2020, 14, 7628-7638.	7.3	106
136	A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Science Advances, 2021, 7, .	4.7	106
137	Surface Transfer Doping of Diamond (100) by Tetrafluoro-tetracyanoquinodimethane. Journal of the American Chemical Society, 2007, 129, 8084-8085.	6.6	105
138	Controlled Hydrogenation of Graphene Sheets and Nanoribbons. ACS Nano, 2011, 5, 888-896.	7.3	105
139	Li-Cycling Properties of Molten Salt Method Prepared Nano/Submicrometer and Micrometer-Sized CuO for Lithium Batteries. ACS Applied Materials & Interfaces, 2013, 5, 4361-4366.	4.0	105
140	Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. Nano Letters, 2018, 18, 482-490.	4.5	105
141	Phase Transformations in TiS ₂ during K Intercalation. ACS Energy Letters, 2017, 2, 1835-1840.	8.8	104
142	Highly Wrinkled Crossâ€Linked Graphene Oxide Membranes for Biological and Chargeâ€Storage Applications. Small, 2012, 8, 423-431.	5.2	103
143	Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/Nâ€rGO Heterostructures for Efficient Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901806.	10.2	101
144	Surface conditioning of chemical vapor deposited hexagonal boron nitride film for negative electron affinity. Applied Physics Letters, 1999, 74, 28-30.	1.5	100

#	Article	IF	CITATIONS
145	Making Patterns on Graphene. Advanced Materials, 2010, 22, 3615-3620.	11.1	100
146	Highly Enhanced Third-Harmonic Generation in 2D Perovskites at Excitonic Resonances. ACS Nano, 2018, 12, 644-650.	7.3	100
147	Tailoring pores in graphene-based materials: from generation to applications. Journal of Materials Chemistry A, 2017, 5, 16537-16558.	5.2	99
148	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. Journal of the American Chemical Society, 2020, 142, 18138-18149.	6.6	99
149	Rapid, Scalable Construction of Highly Crystalline Acylhydrazone Two-Dimensional Covalent Organic Frameworks via Dipole-Induced Antiparallel Stacking. Journal of the American Chemical Society, 2020, 142, 4932-4943.	6.6	99
150	Coordination-Assisted Assembly of 1-D Nanostructured Light-Harvesting Antenna. Journal of the American Chemical Society, 2009, 131, 7210-7211.	6.6	97
151	Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity. ACS Sensors, 2016, 1, 543-551.	4.0	97
152	Dibenzothiopheneâ€ <i>S</i> , <i>S</i> â€Dioxideâ€Based Conjugated Polymers: Highly Efficient Photocatalyts for Hydrogen Production from Water under Visible Light. Small, 2018, 14, e1801839.	5.2	96
153	Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation. Chemistry of Materials, 2019, 31, 1829-1846.	3.2	95
154	Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C ₄ H ₉ NH ₃) ₂ PbI ₄ Perovskite Exfoliated nm-Thin Flakes. Journal of the American Chemical Society, 2019, 141, 1235-1241.	6.6	95
155	Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules. Langmuir, 2009, 25, 185-191.	1.6	92
156	Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu ₂ (O ₂ CCH ₃) ₄]. ACS Applied Materials & Interfaces, 2016, 8, 16154-16159.	4.0	92
157	Two-Dimensional Polymer Synthesized <i>via</i> Solid-State Polymerization for High-Performance Supercapacitors. ACS Nano, 2018, 12, 852-860.	7.3	91
158	Self-Powered Photodetector Using Two-Dimensional Ferroelectric Dion–Jacobson Hybrid Perovskites. Journal of the American Chemical Society, 2020, 142, 18592-18598.	6.6	90
159	Step Flow Versus Mosaic Film Growth in Hexagonal Boron Nitride. Journal of the American Chemical Society, 2013, 135, 2368-2373.	6.6	89
160	Lattice Relaxation at the Interface of Two-Dimensional Crystals: Graphene and Hexagonal Boron-Nitride. Nano Letters, 2014, 14, 5133-5139.	4.5	89
161	Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nature Chemistry, 2020, 12, 1115-1122.	6.6	88
162	Compositional mapping of the argon–methane–hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system. Applied Physics Letters, 2000, 77, 2692-2694.	1.5	87

#	Article	IF	CITATIONS
163	Wide memory window in graphene oxide charge storage nodes. Applied Physics Letters, 2010, 96, .	1.5	87
164	Can Reconstructed Seâ€Deficient Line Defects in Monolayer VSe ₂ Induce Magnetism?. Advanced Materials, 2020, 32, e2000693.	11.1	87
165	Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. Journal of the American Chemical Society, 2009, 131, 16832-16837.	6.6	85
166	An effective surface-enhanced Raman scattering template based on a Ag nanocluster–ZnO nanowire array. Nanotechnology, 2009, 20, 175705.	1.3	85
167	Polyquinoneimines for lithium storage: more than the sum of its parts. Materials Horizons, 2016, 3, 429-433.	6.4	85
168	Room Temperature Ferromagnetism of Monolayer Chromium Telluride with Perpendicular Magnetic Anisotropy. Advanced Materials, 2021, 33, e2103360.	11.1	84
169	The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. Journal of Crystal Growth, 2006, 287, 157-161.	0.7	83
170	Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nature Communications, 2014, 5, 5461.	5.8	83
171	Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 941-949.	1.2	82
172	Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chemical Communications, 2017, 53, 2914-2917.	2.2	81
173	Intrinsic polarization coupling in 2D αâ€In ₂ Se ₃ toward artificial synapse with multimode operations. SmartMat, 2021, 2, 88-98.	6.4	81
174	Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO_4 laser. Optics Letters, 2016, 41, 890.	1.7	80
175	Waferâ€Scale Singleâ€Crystalline ABâ€Stacked Bilayer Graphene. Advanced Materials, 2016, 28, 8177-8183.	11.1	79
176	From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. Nano-Micro Letters, 2021, 13, 98.	14.4	78
177	Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. Small, 2016, 12, 1593-1604.	5.2	77
178	Single crystal of a one-dimensional metallo-covalent organic framework. Nature Communications, 2020, 11, 1434.	5.8	77
179	Coexistence of large conventional and planar spin Hall effect with long spin diffusion length in a low-symmetry semimetal at room temperature. Nature Materials, 2020, 19, 292-298.	13.3	77
180	Self-Assembly and Selected Area Growth of Zinc Oxide Nanorods on Any Surface Promoted by an Aluminum Precoat. Journal of Physical Chemistry B, 2004, 108, 11419-11425.	1.2	76

#	Article	IF	CITATIONS
181	Quasiâ€Monolayer Black Phosphorus with High Mobility and Air Stability. Advanced Materials, 2018, 30, 1704619.	11.1	76
182	Photoluminescence Upconversion by Defects in Hexagonal Boron Nitride. Nano Letters, 2018, 18, 6898-6905.	4.5	76
183	Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralongâ€Life Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802431.	10.2	76
184	Hot carrier diffusion in graphene. Physical Review B, 2010, 82, .	1.1	75
185	Ion Adsorption at the Graphene/Electrolyte Interface. Journal of Physical Chemistry Letters, 2011, 2, 1799-1803.	2.1	75
186	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. Advanced Materials, 2018, 30, e1802397.	11.1	75
187	Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. CrystEngComm, 2013, 15, 3568.	1.3	74
188	Graphene transport at high carrier densities using a polymer electrolyte gate. Europhysics Letters, 2010, 92, 27001.	0.7	73
189	Thiol-Capped ZnO Nanowire/Nanotube Arrays with Tunable Magnetic Properties at Room Temperature. ACS Nano, 2010, 4, 495-505.	7.3	73
190	Terahertz Conductivity of Twisted Bilayer Graphene. Physical Review Letters, 2013, 110, 067401.	2.9	73
191	Molten synthesis of ZnO.Fe3O4 and Fe2O3 and its electrochemical performance. Electrochimica Acta, 2014, 118, 75-80.	2.6	73
192	Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis. Journal of Crystal Growth, 2006, 293, 36-42.	0.7	72
193	Preparation of Conductive Silver Films at Mild Temperatures for Printable Organic Electronics. Chemistry of Materials, 2011, 23, 3273-3276.	3.2	71
194	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	1.7	71
195	Visible Surface Plasmon Modes in Single Bi ₂ Te ₃ Nanoplate. Nano Letters, 2015, 15, 8331-8335.	4.5	71
196	Crystal Engineering of Naphthalenediimide-Based Metal–Organic Frameworks: Structure-Dependent Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 31067-31075.	4.0	71
197	Ultrafast All-Optical Modulation in 2D Hybrid Perovskites. ACS Nano, 2019, 13, 9504-9510.	7.3	71
198	Bisanthracene Bis(dicarboxylic imide)s as Soluble and Stable NIR Dyes. Chemistry - A European Journal, 2009, 15, 9299-9302.	1.7	70

#	Article	IF	CITATIONS
199	Molecular Beam Epitaxy of Highly Crystalline MoSe ₂ on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 7562-7570.	7.3	70
200	2D Perovskites with Giant Excitonic Optical Nonlinearities for Highâ€Performance Subâ€Bandgap Photodetection. Advanced Materials, 2019, 31, e1904155.	11.1	70
201	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS ₂ . ACS Nano, 2020, 14, 4636-4645.	7.3	69
202	TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Archiv European Journal of Physiology, 2014, 466, 563-576.	1.3	68
203	Raman Spectroscopy of Two-Dimensional Bi2TexSe3 â^' x Platelets Produced by Solvothermal Method. Materials, 2015, 8, 5007-5017.	1.3	68
204	Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors. , 2019, 1, 327-335.		68
205	Solution-Processable Polyphenylphenyl Dendron Bearing Molecules for Highly Efficient Blue Light-Emitting Diodes. Organic Letters, 2005, 7, 391-394.	2.4	67
206	Gold nanoparticles supported on functionalized mesoporous silica for selective oxidation of cyclohexane. Microporous and Mesoporous Materials, 2011, 141, 222-230.	2.2	67
207	A hydrothermal anvil made of graphene nanobubbles on diamond. Nature Communications, 2013, 4, 1556.	5.8	67
208	Molecular interactions of graphene oxide with human blood plasma proteins. Nanoscale, 2016, 8, 9425-9441.	2.8	67
209	Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. CheM, 2019, 5, 1223-1234.	5.8	67
210	Oxygen-induced surface state on diamond (100). Diamond and Related Materials, 2001, 10, 500-505.	1.8	66
211	Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations. Applied Physics Letters, 2003, 82, 1881-1883.	1.5	66
212	High-Performance Graphene-Titania Platform for Detection of Phosphopeptides in Cancer Cells. Analytical Chemistry, 2012, 84, 6693-6700.	3.2	66
213	Atomâ€byâ€Atom Fabrication of Monolayer Molybdenum Membranes. Advanced Materials, 2018, 30, e1707281.	11.1	66
214	Intercalated phases of transition metal dichalcogenides. SmartMat, 2020, 1, e1013.	6.4	66
215	Oxygen Adsorption on (111)-Oriented Diamond:Â A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory. Journal of Physical Chemistry B, 2002, 106, 5230-5240.	1.2	65
216	Actively Tunable Visible Surface Plasmons in Bi ₂ Te ₃ and their Energyâ€Harvesting Applications. Advanced Materials, 2016, 28, 3138-3144.	11.1	65

#	Article	IF	CITATIONS
217	Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light: Science and Applications, 2020, 9, 137.	7.7	65
218	Electrostatically Self-Assembled Polyoxometalates on Molecular-Dye-Functionalized Diamond. Journal of the American Chemical Society, 2009, 131, 18293-18298.	6.6	64
219	Filling the Voids of Graphene Foam with Graphene "Eggshell―for Improved Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2014, 6, 9835-9841.	4.0	64
220	A Highâ€Performance Lithium Metal Battery with Ionâ€Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323.	11.1	64
221	Periodic Grain Boundaries Formed by Thermal Reconstruction of Polycrystalline Graphene Film. Journal of the American Chemical Society, 2014, 136, 12041-12046.	6.6	63
222	Temperature- and Phase-Dependent Phonon Renormalization in 1T′-MoS ₂ . ACS Nano, 2018, 12, 5051-5058.	7.3	63
223	Homoepitaxial Growth of Largeâ€Scale Highly Organized Transition Metal Dichalcogenide Patterns. Advanced Materials, 2018, 30, 1704674.	11.1	63
224	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, 10848-10853.	7.2	63
225	Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. Journal of Colloid and Interface Science, 2007, 315, 99-106.	5.0	62
226	Cobalt Singleâ€Atomâ€Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. Advanced Materials, 2020, 32, e1906437.	11.1	62
227	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 11359-11369.	7.2	62
228	Templated Deposition of MoS2 Nanotubules Using Single Source Precursor and Studies of Their Optical Limiting Properties. Journal of Physical Chemistry B, 2006, 110, 1235-1239.	1.2	61
229	Cell Adhesion Properties on Photochemically Functionalized Diamond. Langmuir, 2007, 23, 5615-5621.	1.6	61
230	Femtosecond pump-probe studies of reduced graphene oxide thin films. Applied Physics Letters, 2010, 96, 173106.	1.5	61
231	Stable p-Type Doping of ZnO Film in Aqueous Solution at Low Temperatures. Journal of Physical Chemistry C, 2010, 114, 9981-9987.	1.5	61
232	Graphene Oxide–Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties. Journal of Physical Chemistry Letters, 2012, 3, 2332-2336.	2.1	61
233	Spin-Valley Locking Effect in Defect States of Monolayer MoS ₂ . Nano Letters, 2020, 20, 2129-2136.	4.5	61
234	Tuning the Hole Injection Barrier at the Organic/Metal Interface with Self-Assembled Functionalized Aromatic Thiols. Journal of Physical Chemistry B, 2006, 110, 26075-26080.	1.2	60

#	Article	IF	CITATIONS
235	Selective Accelerated Proliferation of Malignant Breast Cancer Cells on Planar Graphene Oxide Films. ACS Nano, 2016, 10, 3424-3434.	7.3	60
236	Observation of Gap Opening in 1T′ Phase MoS ₂ Nanocrystals. Nano Letters, 2018, 18, 5085-5090.	4.5	60
237	Site-selective alkene borylation enabled by synergistic hydrometallation and borometallation. Nature Catalysis, 2020, 3, 585-592.	16.1	60
238	Influence of Au catalyst on the growth of ZnS nanowires. Chemical Physics Letters, 2004, 400, 175-178.	1.2	59
239	Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Applied Physics Letters, 2005, 87, 101908.	1.5	59
240	Ultrahigh Capacity Due to Multiâ€Electron Conversion Reaction in Reduced Graphene Oxideâ€Wrapped MoO ₂ Porous Nanobelts. Small, 2015, 11, 2446-2453.	5.2	59
241	Lateral Epitaxy of Atomically Sharp WSe ₂ /WS ₂ Heterojunctions on Silicon Dioxide Substrates. Chemistry of Materials, 2016, 28, 7194-7197.	3.2	59
242	Photophysics of 2D Organic–Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. Advanced Science, 2021, 8, 2001843.	5.6	59
243	Highly sensitive reduced graphene oxide microelectrode array sensor. Biosensors and Bioelectronics, 2015, 65, 265-273.	5.3	58
244	Graphene Intermediate Layer in Tandem Organic Photovoltaic Cells. Advanced Functional Materials, 2011, 21, 4430-4435.	7.8	57
245	Electronic Properties of Nanodiamond Decorated Graphene. ACS Nano, 2012, 6, 1018-1025.	7.3	57
246	Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2. Electrochimica Acta, 2013, 106, 143-148.	2.6	57
247	Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System. Journal of the American Chemical Society, 2015, 137, 2600-2607.	6.6	57
248	Oscillating edge states in one-dimensional MoS2 nanowires. Nature Communications, 2016, 7, 12904.	5.8	57
249	Exploring Low Power and Ultrafast Memristor on p-Type van der Waals SnS. Nano Letters, 2021, 21, 8800-8807.	4.5	57
250	Giant second-harmonic generation in ferroelectric NbOl2. Nature Photonics, 2022, 16, 644-650.	15.6	57
251	A new route to graphene layers by selective laser ablation. AIP Advances, 2011, 1, .	0.6	56
252	Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells. Chemical Communications, 2012, 48, 10865.	2.2	56

#	Article	IF	CITATIONS
253	Highâ€Performance Hybrid Solar Cell Made from CdSe/CdTe Nanocrystals Supported on Reduced Graphene Oxide and PCDTBT. Advanced Functional Materials, 2014, 24, 1904-1910.	7.8	56
254	Controlled Growth of 1D MoSe ₂ Nanoribbons with Spatially Modulated Edge States. Nano Letters, 2017, 17, 1116-1120.	4.5	56
255	Giant and Tunable Optical Nonlinearity in Singleâ€Crystalline 2D Perovskites due to Excitonic and Plasma Effects. Advanced Materials, 2019, 31, e1902685.	11.1	56
256	Edge Segregated Polymorphism in 2D Molybdenum Carbide. Advanced Materials, 2019, 31, e1808343.	11.1	56
257	Suzuki Coupling of Aryl Organics on Diamond. Chemistry of Materials, 2008, 20, 3137-3144.	3.2	55
258	Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics. Advanced Functional Materials, 2014, 24, 731-738.	7.8	55
259	Highly Stable Twoâ€Dimensional Tin(II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials, 2019, 29, 1904810.	7.8	55
260	Using the Graphene Moiré Pattern for the Trapping of C ₆₀ and Homoepitaxy of Graphene. ACS Nano, 2012, 6, 944-950.	7.3	54
261	Large Area Synthesis of 1Dâ€MoSe ₂ Using Molecular Beam Epitaxy. Advanced Materials, 2017, 29, 1605641.	11.1	54
262	Surface-Limited Superconducting Phase Transition on 1 <i>T</i> -TaS ₂ . ACS Nano, 2018, 12, 12619-12628.	7.3	54
263	Bifunctional FePt Coreâ^'Shell and Hollow Spheres:Â Sonochemical Preparation and Self-Assembly. Chemistry of Materials, 2007, 19, 2566-2572.	3.2	53
264	Adsorption of molecular oxygen on the walls of pristine and carbon-doped (5,5) boron nitride nanotubes: Spin-polarized density functional study. Physical Review B, 2007, 75, .	1.1	53
265	Alkylamine capped metal nanoparticle "inks―for printable SERS substrates, electronics and broadband photodetectors. Nanoscale, 2011, 3, 2268.	2.8	53
266	<i>In Situ</i> Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid Electrolyte Interface of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 2600-2608.	1.5	53
267	Graphene Nanobubbles: A New Optical Nonlinear Material. Advanced Optical Materials, 2015, 3, 744-749.	3.6	52
268	Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7â€Fold to 8â€Fold Interpenetrated Metal–Organic Frameworks (MOFs). Angewandte Chemie - International Edition, 2020, 59, 833-838.	7.2	52
269	In Situ Synthesis of Lead-Free Halide Perovskite Cs ₂ AgBiBr ₆ Supported on Nitrogen-Doped Carbon for Efficient Hydrogen Evolution in Aqueous HBr Solution. ACS Applied Materials & Interfaces, 2021, 13, 10037-10046.	4.0	52
270	Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An in Situ PXRD Study. Chemistry of Materials, 2015, 27, 3471-3482.	3.2	51

#	Article	lF	CITATIONS
271	Strain Modulation by van der Waals Coupling in Bilayer Transition Metal Dichalcogenide. ACS Nano, 2018, 12, 1940-1948.	7.3	51
272	Electrical transport and photovoltaic effects of core–shell CuO/C60nanowire heterostructure. Nanotechnology, 2009, 20, 065203.	1.3	50
273	Recent studies on diamond surfaces. Diamond and Related Materials, 2000, 9, 1582-1590.	1.8	49
274	Properties of Strained Structures and Topological Defects in Graphene. ACS Nano, 2013, 7, 8350-8357.	7.3	49
275	From All-Triazine C ₃ N ₃ Framework to Nitrogen-Doped Carbon Nanotubes: Efficient and Durable Trifunctional Electrocatalysts. ACS Applied Nano Materials, 2019, 2, 7969-7977.	2.4	49
276	Highly efficient dyeâ€sensitized solar cells using phenothiazine derivative organic dyes. Progress in Photovoltaics: Research and Applications, 2010, 18, 573-581.	4.4	48
277	A new class of solid state ionic conductors for application in all solid state dye sensitized solar cells. Chemical Communications, 2010, 46, 2091.	2.2	48
278	Observation of room-temperature high-energy resonant excitonic effects in graphene. Physical Review B, 2011, 84, .	1.1	48
279	Noncovalent Selfâ€Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions. Advanced Materials, 2016, 28, 631-639.	11.1	48
280	Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 289-296.	9.5	48
281	Diamond and carbon nanotube glucose sensors based on electropolymerization. Diamond and Related Materials, 2004, 13, 1075-1079.	1.8	47
282	Effect of Functional Group (Fluorine) of Aromatic Thiols on Electron Transfer at the Moleculeâ^'Metal Interface. Journal of the American Chemical Society, 2006, 128, 935-939.	6.6	47
283	Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition [Invited]. Optical Materials Express, 2012, 2, 708.	1.6	47
284	Fluorescent Nanogel of Arsenic Sulfide Nanoclusters. Angewandte Chemie - International Edition, 2009, 48, 6282-6285.	7.2	46
285	Synthesis and Superior Opticalâ€Limiting Properties of Fluoreneâ€Thiopheneâ€Benzothiadazole Polymerâ€Functionalized Graphene Sheets. Small, 2010, 6, 2292-2300.	5.2	46
286	Electrochemical performance of graphene and copper oxide composites synthesized from a metal–organic framework (Cu-MOF). RSC Advances, 2013, 3, 19051.	1.7	46
287	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. Physical Review B, 2013, 88, .	1.1	46
288	Roomâ€Temperature Ice Growth on Graphite Seeded by Nanoâ€Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 8708-8712.	7.2	46

#	Article	IF	CITATIONS
289	A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale, 2017, 9, 18951-18958.	2.8	46
290	Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donorâ€i€â€Acceptor Organic Molecule Heterostructures. Advanced Functional Materials, 2020, 30, 2005106.	7.8	46
291	Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. Diamond and Related Materials, 2005, 14, 426-431.	1.8	45
292	Molecular Hemocompatibility of Graphene Oxide and Its Implication for Antithrombotic Applications. Small, 2015, 11, 5105-5117.	5.2	45
293	Photoactive PDI–Cobalt Complex Immobilized on Reduced Graphene Oxide for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 880-886.	4.0	45
294	Ultrafast charge/discharge solid-state thin-film supercapacitors via regulating the microstructure of transition-metal-oxide. Journal of Materials Chemistry A, 2017, 5, 2759-2767.	5.2	45
295	The evolution of R30° and 6â^š3×6â^š3R30° superstructures on 6H–SiC (0001) surfaces studied by reflection high energy electron diffraction. Surface Science, 2001, 478, 57-71.	0.8	44
296	Molten salt method of preparation and cathodic studies on layered-cathode materials Li(Co0.7Ni0.3)O2 and Li(Ni0.7Co0.3)O2 for Li-ion batteries. Journal of Power Sources, 2013, 225, 374-381.	4.0	44
297	Graphene Oxide and Its Functionalized Derivatives as Carbocatalysts in the Multicomponent Strecker Reaction of Ketones. ChemCatChem, 2014, 6, 2507-2511.	1.8	44
298	Surface oxygenation studies on ()-oriented diamond using an atom beam source and local anodic oxidation. Surface Science, 2002, 505, 93-114.	0.8	43
299	Optimizing Biosensing Properties on Undecylenic Acid-Functionalized Diamond. Langmuir, 2007, 23, 5824-5830.	1.6	43
300	Diamond-Based Molecular Platform for Photoelectrochemistry. Journal of the American Chemical Society, 2008, 130, 17218-17219.	6.6	43
301	Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer. Optics Express, 2010, 18, 25928.	1.7	43
302	Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery. Advanced Materials, 2021, 33, e2102083.	11.1	43
303	Surface Modification Studies of Edge-Oriented Molybdenum Sulfide Nanosheets. Langmuir, 2004, 20, 6914-6920.	1.6	42
304	Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 629-642.	2.2	42
305	Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nature Communications, 2022, 13, 138.	5.8	42
306	Promoting Dinuclearâ€Type Catalysis in Cu ₁ –C ₃ N ₄ Singleâ€Atom Catalysts. Advanced Materials, 2022, 34, .	11.1	42

#	Article	IF	CITATIONS
307	Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga ₂ O ₃ /EGaIn top electrodes. Nanoscale, 2014, 6, 11246-11258.	2.8	41
308	Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nature Communications, 2020, 11, 4722.	5.8	41
309	The Chemistry of CH Bond Activation on Diamond. Chemistry - an Asian Journal, 2010, 5, 1532-1540.	1.7	40
310	Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer–graphene oxide composite. Nanotechnology, 2010, 21, 415203.	1.3	40
311	Whisper Gallery Modes in Monolayer Tungsten Disulfide-Hexagonal Boron Nitride Optical Cavity. ACS Photonics, 2018, 5, 353-358.	3.2	40
312	Anisotropic Third-Order Nonlinearity in Pristine and Lithium Hydride Intercalated Black Phosphorus. ACS Photonics, 2018, 5, 4969-4977.	3.2	40
313	Promoted Glycerol Oxidation Reaction in an Interfaceâ€Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763.	11.1	40
314	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	5.8	40
315	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. Research, 2020, 2020, 9085782.	2.8	40
316	Novel iridium complexes as high-efficiency yellow and red phosphorescent light emitters for organic light-emitting diodes. Tetrahedron, 2008, 64, 10814-10820.	1.0	39
317	Arsenic(II) Sulfide Quantum Dots Prepared by a Wet Process from its Bulk. Journal of the American Chemical Society, 2008, 130, 11596-11597.	6.6	39
318	Observing Highâ€Pressure Chemistry in Graphene Bubbles. Angewandte Chemie - International Edition, 2014, 53, 215-219.	7.2	39
319	Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382.	11.1	39
320	Low dielectric constanta-SiOC:H films as copper diffusion barrier. Journal of Applied Physics, 2003, 93, 1241-1245.	1.1	38
321	Growth of monodispersed cobalt nanoparticles on 6H–SiC(0001) honeycomb template. Applied Physics Letters, 2004, 84, 281-283.	1.5	38
322	Dislocation-driven growth of two-dimensional lateral quantum-well superlattices. Science Advances, 2018, 4, eaap9096.	4.7	38
323	Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nature Communications, 2018, 9, 4871.	5.8	38
324	Healing of Planar Defects in 2D Materials via Grain Boundary Sliding. Advanced Materials, 2019, 31, e1900237.	11.1	38

#	Article	IF	CITATIONS
325	Singleâ€Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. Advanced Materials, 2022, 34, e2103882.	11.1	38
326	Constructing ambivalent imidazopyridinium-linked covalent organic frameworks. , 2022, 1, 382-392.		38
327	Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption. Applied Physics Letters, 2005, 87, 243105.	1.5	37
328	Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis. Nanotechnology, 2006, 17, 483-488.	1.3	36
329	Electrical measurement of non-destructively p-type doped graphene using molybdenum trioxide. Applied Physics Letters, 2011, 99, .	1.5	36
330	Medical Students' Knowledge, Perceptions, and Interest in Complementary and Alternative Medicine. Journal of Alternative and Complementary Medicine, 2013, 19, 360-366.	2.1	36
331	Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition. Nanoscale, 2018, 10, 3356-3361.	2.8	36
332	Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7â€Fold to 8â€Fold Interpenetrated Metal–Organic Frameworks (MOFs). Angewandte Chemie, 2020, 132, 843-848.	1.6	36
333	Water-Induced Negative Electron Affinity on Diamond (100). Journal of Physical Chemistry C, 2008, 112, 2487-2491.	1.5	35
334	Oxygenâ€Terminated Nanocrystalline Diamond Film as an Efficient Anode in Photovoltaics. Advanced Functional Materials, 2010, 20, 1313-1318.	7.8	35
335	Valley Polarization of Trions and Magnetoresistance in Heterostructures of MoS ₂ and Yttrium Iron Garnet. ACS Nano, 2017, 11, 12257-12265.	7.3	35
336	Stable Molecular Diodes Based on π–π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes. Advanced Materials, 2018, 30, 1706322.	11.1	35
337	Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface. Nature Communications, 2020, 11, 5483.	5.8	35
338	Divergent Chemistry Paths for 3D and 1D Metalloâ€Covalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2020, 59, 11527-11532.	7.2	35
339	Thermal stability of the negative electron affinity condition on cubic boron nitride. Applied Physics Letters, 1998, 72, 3023-3025.	1.5	34
340	Selective oxidation of cyclohexane over gold nanoparticles supported on mesoporous silica prepared in the presence of thioether functionality. Catalysis Science and Technology, 2011, 1, 285.	2.1	34
341	Localized insulator-conductor transformation of graphene oxide thin films via focused laser beam irradiation. Applied Physics A: Materials Science and Processing, 2012, 106, 523-531.	1.1	34
342	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. Journal of Materials Chemistry A, 2019, 7, 15575-15579.	5.2	34

#	Article	IF	CITATIONS
343	Large enhancement of thermoelectric performance in MoS ₂ / <i>h</i> -BN heterostructure due to vacancy-induced band hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13929-13936.	3.3	34
344	Ferroelectricity and Rashba effect in 2D organic–inorganic hybrid perovskites. Trends in Chemistry, 2021, 3, 716-732.	4.4	34
345	Fluorescent Nanoparticles Comprising Amphiphilic Rodâ^'Coil Graft Copolymers. Macromolecules, 2008, 41, 1438-1443.	2.2	33
346	Investigation of morphology and photoluminescence of hydrothermally grown ZnO nanorods on substrates pre-coated with ZnO nanoparticles. Journal of Crystal Growth, 2009, 311, 1278-1284.	0.7	33
347	Ultrathin Carbon with Interspersed Graphene/Fullerene-like Nanostructures: A Durable Protective Overcoat for High Density Magnetic Storage. Scientific Reports, 2015, 5, 11607.	1.6	33
348	Largeâ€Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. Advanced Electronic Materials, 2016, 2, 1600077.	2.6	33
349	Silicon incorporation into chemical vapor deposition diamond: A role of oxygen. Applied Physics Letters, 1997, 71, 629-631.	1.5	32
350	Supported Lipid Bilayer on Nanocrystalline Diamond: Dual Optical and Fieldâ€Effect Sensor for Membrane Disruption. Advanced Functional Materials, 2009, 19, 109-116.	7.8	32
351	Synthesis and Electrical Characterization of Oligo(phenylene ethynylene) Molecular Wires Coordinated to Transition Metal Complexes. ACS Nano, 2009, 3, 2103-2114.	7.3	32
352	Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. Journal of Power Sources, 2013, 236, 1-9.	4.0	32
353	Largeâ€Area Graphene Nanodot Array for Plasmonâ€Enhanced Infrared Spectroscopy. Small, 2016, 12, 1302-1308.	5.2	32
354	Two-Dimensional Conjugated Polymers Based on C–C Coupling. Accounts of Chemical Research, 2017, 50, 522-526.	7.6	32
355	Roomâ€īemperature Palladium atalyzed Deuterogenolysis of Carbon Oxygen Bonds towards Deuterated Pharmaceuticals. Angewandte Chemie - International Edition, 2021, 60, 6357-6361.	7.2	32
356	Tuning the electron affinity of CVD diamond with adsorbed caesium and oxygen layers. Diamond and Related Materials, 1997, 6, 874-878.	1.8	31
357	Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones. Applied Physics Letters, 2004, 85, 5388-5390.	1.5	31
358	CdSe/AsS Coreâ^'Shell Quantum Dots: Preparation and Two-Photon Fluorescence. Journal of the American Chemical Society, 2009, 131, 11300-11301.	6.6	31
359	Au nanoparticles dispersed on functionalized mesoporous silica for selective oxidation of cyclohexane. Catalysis Today, 2010, 158, 220-227.	2.2	31
360	The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications. Carbon, 2011, 49, 4911-4919.	5.4	31

#	Article	IF	CITATIONS
361	Expedient synthesis of <i>E</i> -hydrazone esters and 1 <i>H</i> -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	4.7	31
362	Interface Engineering of Au(111) for the Growth of 1T′-MoSe ₂ . ACS Nano, 2019, 13, 2316-2323.	7.3	31
363	Nanoparticle Dispersion on Reconstructed Carbon Nanomeshes. Langmuir, 2004, 20, 10779-10784.	1.6	30
364	C60on SiC Nanomesh. Journal of Physical Chemistry B, 2006, 110, 21873-21881.	1.2	30
365	CVD Graphene as Interfacial Layer to Engineer the Organic Donor–Acceptor Heterojunction Interface Properties. ACS Applied Materials & Interfaces, 2012, 4, 3134-3140.	4.0	30
366	Supramolecular Structure of Self-Assembled Monolayers of Ferrocenyl Terminated <i>n</i> -Alkanethiolates on Gold Surfaces. Langmuir, 2014, 30, 13447-13455.	1.6	30
367	Phonon-Mediated Colossal Magnetoresistance in Graphene/Black Phosphorus Heterostructures. Nano Letters, 2018, 18, 3377-3383.	4.5	30
368	Homoepitaxial growth and hydrogen incorporation on the chemical vapor deposited (111) diamond. Journal of Applied Physics, 1999, 86, 1306-1310.	1.1	29
369	Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles. Chemical Physics Letters, 2004, 387, 40-46.	1.2	29
370	Chemical vapor deposition graphene as structural template to control interfacial molecular orientation of chloroaluminium phthalocyanine. Applied Physics Letters, 2011, 99, 093301.	1.5	29
371	Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer. ACS Applied Materials & Interfaces, 2016, 8, 29496-29503.	4.0	29
372	Nano-bio interactions between carbon nanomaterials and blood plasma proteins: why oxygen functionality matters. NPG Asia Materials, 2017, 9, e422-e422.	3.8	29
373	Progress and prospects of aberration-corrected STEM for functional materials. Ultramicroscopy, 2018, 194, 182-192.	0.8	29
374	Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest. Analyst, The, 2008, 133, 448.	1.7	28
375	Theoretical and Experimental Studies of Electronic Transport of Dithienothiophene. Journal of Physical Chemistry C, 2009, 113, 12530-12537.	1.5	28
376	Cerebral protection of purified Herba Leonuri extract on middle cerebral artery occluded rats. Journal of Ethnopharmacology, 2009, 125, 337-343.	2.0	28
377	Substoichiometric Molybdenum Sulfide Phases with Catalytically Active Basal Planes. Journal of the American Chemical Society, 2016, 138, 14121-14128.	6.6	28
378	Elucidating Surface and Bulk Emission in 3D Hybrid Organic–Inorganic Lead Bromide Perovskites. Advanced Optical Materials, 2018, 6, 1800470.	3.6	28

#	Article	IF	CITATIONS
379	Analog and Digital Mode αâ€In ₂ Se ₃ Memristive Devices for Neuromorphic and Memory Applications. Advanced Electronic Materials, 2021, 7, 2100609.	2.6	28
380	High-Yield Exfoliation of Monolayer 1T'-MoTe ₂ as Saturable Absorber for Ultrafast Photonics. ACS Nano, 2021, 15, 18448-18457.	7.3	28
381	A spectroscopic study of the negative electron affinity of cesium oxide-coated diamond (111) and theoretical calculation of the surface density-of-states on oxygenated diamond (111). Diamond and Related Materials, 2002, 11, 1379-1384.	1.8	27
382	Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. ACS Photonics, 2017, 4, 3055-3062.	3.2	27
383	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	11.1	27
384	Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23972-23981.	4.0	27
385	Room Temperature Commensurate Charge Density Wave on Epitaxially Grown Bilayer 2H-Tantalum Sulfide on Hexagonal Boron Nitride. ACS Nano, 2020, 14, 3917-3926.	7.3	27
386	Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy, 2020, 70, 104482.	8.2	27
387	Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal. Nature Communications, 2022, 13, .	5.8	27
388	Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications. Applied Physics Letters, 2004, 84, 4331-4333.	1.5	26
389	Polaronic Trions at the MoS 2 /SrTiO 3 Interface. Advanced Materials, 2019, 31, 1903569.	11.1	26
390	Grapheneâ€Oxideâ€Catalyzed Crossâ€Dehydrogenative Coupling of Oxindoles with Arenes and Thiophenols. Advanced Synthesis and Catalysis, 2020, 362, 789-794.	2.1	26
391	Conductive polymer-modified boron-doped diamond for DNA hybridization analysis. Chemical Physics Letters, 2004, 388, 483-487.	1.2	25
392	Optical conductivity study of screening of many-body effects in graphene interfaces. Europhysics Letters, 2012, 99, 67009.	0.7	25
393	"Quasiâ€freestanding―Grapheneâ€onâ€Single Walled Carbon Nanotube Electrode for Applications in Organic Lightâ€emitting Diode. Small, 2014, 10, 944-949.	5.2	25
394	Effect of oxygen addition on boron incorporation on semiconductive diamond CVD. Diamond and Related Materials, 1998, 7, 1144-1147.	1.8	24
395	Ab Initio Studies of Borazine and Benzene Cyclacenes and Their Fluoro-Substituted Derivatives. Journal of Physical Chemistry A, 2003, 107, 5555-5560.	1.1	24
396	Patterning of graphene with tunable size and shape for microelectrode array devices. Carbon, 2014, 67, 390-397.	5.4	24

#	Article	IF	CITATIONS
397	Tunable broadband transmission and phase modulation of light through graphene multilayers. Journal of Applied Physics, 2014, 115, .	1.1	24
398	Desalination properties of a free-standing, partially oxidized few-layer graphene membrane. Desalination, 2019, 451, 72-80.	4.0	24
399	Efficient and Anisotropic Second Harmonic Generation in Few‣ayer SnS Film. Advanced Optical Materials, 2021, 9, 2101200.	3.6	24
400	Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding. Nature Communications, 2022, 13, 794.	5.8	24
401	Surface structure of single-crystal cubic boron nitride (111) studied by LEED, EELS, and AES. Physical Review B, 1997, 56, R12791-R12794.	1.1	23
402	Strain dependence of the heat transport properties of graphene nanoribbons. Nanotechnology, 2012, 23, 495702.	1.3	23
403	First-principles study of the thermoelectric properties of strained graphene nanoribbons. Journal of Materials Chemistry A, 2013, 1, 10762.	5.2	23
404	Visualizing the Anomalous Charge Density Wave States in Graphene/NbSe ₂ Heterostructures. Advanced Materials, 2020, 32, e2003746.	11.1	23
405	Addressing the quantitative conversion bottleneck in single-atom catalysis. Nature Communications, 2022, 13, 2807.	5.8	23
406	Hydrogen-induced surface structuring of a cubic boron nitride (100) face studied by low-energy electron diffraction and electron spectroscopic techniques. Physical Review B, 1998, 57, 7266-7274.	1.1	22
407	Surface structure ofC(100)â^'(2×1)â^'Hstudied by a quantitative LEED analysis. Physical Review B, 1999, 59, 10347-10350.	1.1	22
408	Linear relationship between H+-trapping reaction energy and defect generation: Insight into nitrogen-enhanced negative bias temperature instability. Applied Physics Letters, 2003, 83, 530-532.	1.5	22
409	Initial-stage oxidation mechanism ofGe(100)2×1dimers. Physical Review B, 2005, 72, .	1.1	22
410	La2S3thin films from metal organic chemical vapor deposition of single-source precursor. Journal of Materials Chemistry, 2006, 16, 272-277.	6.7	22
411	Whole cell environmental biosensor on diamond. Analyst, The, 2008, 133, 739.	1.7	22
412	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. ACS Applied Materials & Interfaces, 2018, 10, 22042-22049.	4.0	22
413	Anomalous Quantum Metal in a 2D Crystalline Superconductor with Electronic Phase Nonuniformity. Nano Letters, 2019, 19, 4126-4133.	4.5	22
414	Atomic-Level Electronic Properties of Carbon Nitride Monolayers. ACS Nano, 2020, 14, 14008-14016.	7.3	22

#	Article	IF	CITATIONS
415	Domain Engineering in ReS ₂ by Coupling Strain during Electrochemical Exfoliation. Advanced Functional Materials, 2020, 30, 2003057.	7.8	22
416	Atomic Imaging of Electrically Switchable Striped Domains in <i>β</i> ′â€In ₂ Se ₃ . Advanced Science, 2021, 8, e2100713.	5.6	22
417	Data-driven discovery of high performance layered van der Waals piezoelectric NbOl2. Nature Communications, 2022, 13, 1884.	5.8	22
418	Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions. Applied Physics Letters, 1998, 73, 765-767.	1.5	21
419	Ab initio studies of borazine and benzene cyclacenes. Diamond and Related Materials, 2003, 12, 1194-1200.	1.8	21
420	Atomic Scale Oxidation of Silicon Nanoclusters on Silicon Carbide Surfaces. Journal of Physical Chemistry B, 2003, 107, 11597-11603.	1.2	21
421	Highly textured, magnetic Fe(1+x)S nanorods grown on silicon. Applied Physics Letters, 2007, 91, 084105.	1.5	21
422	Copper Phthalocyanine on Hydrogenated and Bare Diamond (001)-2 × 1: Influence of Interfacial Interactions on Molecular Orientations. Langmuir, 2010, 26, 165-172.	1.6	21
423	Room Temperature Magnetic Graphene Oxide―Iron Oxide Nanocomposite Based Magnetoresistive Random Access Memory Devices via Spinâ€Đependent Trapping of Electrons. Small, 2014, 10, 1945-1952.	5.2	21
424	High-efficiency solution processable electrophosphorescent iridium complexes bearing polyphenylphenyl dendron ligands. Journal of Organometallic Chemistry, 2009, 694, 1317-1324.	0.8	20
425	Nanocontact-induced catalytic activation in palladium nanoparticles. Nanoscale, 2009, 1, 391.	2.8	20
426	Effect of LLT Coating on Elevated Temperature Cycle Life Performance of LiMn ₂ O ₄ Cathode Material. Journal of the Electrochemical Society, 2013, 160, A3144-A3147.	1.3	20
427	Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges. Physical Chemistry Chemical Physics, 2015, 17, 31680-31684.	1.3	20
428	Quantum Mechanical Rippling of a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><m Controlled by Interlayer Bilayer Coupling. Physical Review Letters, 2015, 114, 065501.</m </mml:mrow></mml:msub></mml:mrow></mml:math>	1111 2:09 11>2	2101:mn> </td
429	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">SrTiO<mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>due to resonant excitonic effects mediated by Ti<mml:math< td=""><td>1.1</td><td>20</td></mml:math<></mml:mi 	1.1	20
430	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mn>3</mml:mn> cmml:mi>dTuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. Nature Communications, 2017, 8, 677.</mml:mrow>	i> 5.8	nrow>20
431	Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition. Applied Physics Letters, 1998, 73, 2675-2677.	1.5	19
432	Plasma synthesis of well-aligned carbon nanocones. Diamond and Related Materials, 2005, 14, 902-906.	1.8	19

#	Article	IF	CITATIONS
433	Hexagonally packed zinc oxide nanorod bundles on hydrotalcite sheets. Journal of Materials Chemistry, 2005, 15, 2508.	6.7	19
434	Light Scattering and Luminescence Studies on Self-Aggregation Behavior of Amphiphilic Copolymer Micelles. Journal of Physical Chemistry B, 2008, 112, 749-755.	1.2	19
435	Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells. Applied Physics Letters, 2009, 95, 133305.	1.5	19
436	Charge transport in lightly reduced graphene oxide: A transport energy perspective. Journal of Applied Physics, 2013, 113, .	1.1	19
437	From hospital to community: Use of antipsychotics in hospitalized elders. Journal of Hospital Medicine, 2014, 9, 802-804.	0.7	19
438	Enhancing charge-density-wave order in 1T-TiSe2 nanosheet by encapsulation with hexagonal boron nitride. Applied Physics Letters, 2016, 109, 141902.	1.5	19
439	Heterogeneous reaction route to CuInS2 thin films. Chemical Communications, 2002, , 1400-1401.	2.2	18
440	Trialkylammonium salts of [M(SC{O}R)4]– (M = Ga3+ and In3+) as precursors for metal sulfide thin films. Journal of Materials Chemistry, 2003, 13, 1149-1155.	6.7	18
441	Hollowing Mechanism of Zinc Sulfide Nanowires in Vacuum Induced by an Atomic Oxygen Beam. Journal of Physical Chemistry B, 2004, 108, 9631-9637.	1.2	18
442	Malignant cardioinhibitory vasovagal syncope — An uncommon cardiovascular complication of Roux-en-Y gastric bypass surgery: The fainting syndrome!. International Journal of Cardiology, 2013, 164, e38-e39.	0.8	18
443	Surface Plasmon Enhanced Nitrogenâ€Doped Graphene Quantum Dot Emission by Single Bismuth Telluride Nanoplates. Advanced Optical Materials, 2017, 5, 1700176.	3.6	18
444	Precise Singleâ€Step Electrophoretic Multiâ€Sized Fractionation of Liquidâ€Exfoliated Nanosheets. Advanced Functional Materials, 2018, 28, 1801622.	7.8	18
445	Molecular engineered palladium single atom catalysts with an M-C ₁ N ₃ subunit for Suzuki coupling. Journal of Materials Chemistry A, 2021, 9, 11427-11432.	5.2	18
446	Para-Substituted Triphenylamine as a Catholyte for Zinc–Organic Aqueous Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 3612-3621.	2.5	18
447	A comparison study of cerebral protection using Ginkgo biloba extract and Losartan on stroked rats. Neuroscience Letters, 2006, 398, 28-33.	1.0	17
448	Highly efficient electroluminescent biphenylyl-substituted poly(p-phenylenevinylene)s through fine tuning the polymer structure. Polymer, 2006, 47, 1820-1829.	1.8	17
449	Tuning the Electron Affinity and Secondary Electron Emission of Diamond (100) Surfaces by Dielsâ 'Alder Reaction. Langmuir, 2007, 23, 9722-9727.	1.6	17
450	Electronically Transparent Graphene Barriers against Unwanted Doping of Silicon. ACS Applied Materials & Materials & Materials & Samp; Interfaces, 2014, 6, 20464-20472.	4.0	17

#	Article	IF	CITATIONS
451	Modulating Charge Density Wave Order in a 1T-TaS ₂ /Black Phosphorus Heterostructure. Nano Letters, 2019, 19, 2840-2849.	4.5	17
452	The interaction of azomethane with Si(100). Surface Science, 1995, 341, 92-102.	0.8	16
453	Confocal Raman spectroscopic study of the heteroepitaxial diamond growth on Pt(111). Diamond and Related Materials, 1998, 7, 783-788.	1.8	16
454	Oxidation of the 3×3 6H-SiC (0001) adatom cluster: A periodic density functional theory and dynamic rocking beam analysis. Journal of Chemical Physics, 2003, 119, 4905-4915.	1.2	16
455	A Surface Chemistry Route to Molybdenum Sulfide and Germanide Films Using the Single-Source Precursor Tetrakis(diethylaminodithiocarbomato)molybdate(IV). Journal of Physical Chemistry B, 2004, 108, 17537-17545.	1.2	16
456	High resolution electron energy loss spectroscopy study of clean, air-exposed and methanol-dosed Ge(100) surface. Surface Science, 2005, 575, 51-59.	0.8	16
457	Theoretical Study on Polyimideâ~Cu(100)/Ni(100) Adhesion. Chemistry of Materials, 2006, 18, 5312-5316.	3.2	16
458	Chemical Bonding of Fullerene and Fluorinated Fullerene on Bare and Hydrogenated Diamond. ChemPhysChem, 2008, 9, 1286-1293.	1.0	16
459	Room temperature ferromagnetism at self-assembled monolayer modified Ag nanocluster–ZnO nanowire interface. Applied Physics Letters, 2008, 93, 193111.	1.5	16
460	Wrapping Graphene Sheets Around Organic Wires for Making Memory Devices. Small, 2011, 7, 2372-2378.	5.2	16
461	Largeâ€Area, Periodic, Hexagonal Wrinkles on Nanocrystalline Graphitic Film. Advanced Functional Materials, 2015, 25, 5492-5503.	7.8	16
462	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1842.	0.9	16
463	Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS ₂ Grown on SrTiO ₃ . ACS Nano, 2020, 14, 16761-16769.	7.3	16
464	Surface morphology of homoepitaxially grown (111), (001), and (110) diamond studied by low energy electron diffraction and reflection high-energy electron diffraction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2991-3002.	0.9	15
465	Cycloadditions on Diamond (100) 2 × 1: Observation of Lowered Electron Affinity due to Hydrocarbon Adsorption. Journal of Physical Chemistry B, 2006, 110, 5611-5620.	1.2	15
466	Work function of (8,0) single-walled boron nitride nanotube at the open tube end. Journal of Applied Physics, 2006, 99, 104309.	1.1	15
467	Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode. Organic Electronics, 2010, 11, 1942-1946.	1.4	15
468	UV-visible-near infrared photoabsorption and photodetection using close-packed metallic gold nanoparticle network. Journal of Applied Physics, 2010, 107, 053510.	1.1	15

#	Article	IF	CITATIONS
469	Selective concentration-dependent manipulation of intrinsic fluorescence of plasma proteins by graphene oxide nanosheets. RSC Advances, 2016, 6, 46558-46566.	1.7	15
470	Supramolecular Structure of the Monolayer Triggers Odd–Even Effects in the Tunneling Rates across Noncovalent Junctions on Graphene. Journal of Physical Chemistry C, 2017, 121, 4172-4180.	1.5	15
471	Controllable Synthesis of 2D and 1D MoS ₂ Nanostructures on Au Surface. Advanced Functional Materials, 2017, 27, 1603887.	7.8	15
472	The Origin of Dual Emission in Antiparallel-Stacked Two-Dimensional Covalent Organic Frameworks. , 2020, 2, 654-657.		15
473	Synthesis of Twoâ€Dimensional Perovskite by Inverse Temperature Crystallization and Studies of Exciton States by Twoâ€Photon Excitation Spectroscopy. Advanced Functional Materials, 2020, 30, 2002661.	7.8	15
474	Unveiling Atomic-Scale Moiré Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers. Nano Letters, 2021, 21, 3262-3270.	4.5	15
475	Surface studies of the reactivity of methyl, acetylene and atomic hydrogen at CVD diamond surfaces. Surface Science, 1998, 399, 1-14.	0.8	14
476	Negative electron affinity of cubic boron nitride. Diamond and Related Materials, 1999, 8, 781-784.	1.8	14
477	Hydrogen desorption and etching studies of cubic boron nitride surfaces. Diamond and Related Materials, 1999, 8, 1296-1300.	1.8	14
478	Hydrogen incorporation control in high quality homoepitaxial diamond (111) growth. Diamond and Related Materials, 1999, 8, 1291-1295.	1.8	14
479	Strain analysis in silicon substrates under uniaxial and biaxial stress by convergent beam electron diffraction. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 940.	1.6	14
480	Empirical Model for Density and Length Prediction of ZnO Nanorods on GaN Using Hydrothermal Synthesis. Journal of the Electrochemical Society, 2007, 154, K45.	1.3	14
481	A simple, high yield method for the synthesis of organic wires from aromatic molecules using nitric acid as the solvent. Chemical Communications, 2011, 47, 4153.	2.2	14
482	Graphene oxide inhibits malaria parasite invasion and delays parasitic growth <i>in vitro</i> . Nanoscale, 2017, 9, 14065-14073.	2.8	14
483	Local Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 4003-4011.	2.1	14
484	In-Plane Anisotropic Nonlinear Optical Properties of Two-Dimensional Organic–Inorganic Hybrid Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 7010-7018.	2.1	14
485	Growth studies of thin film diamond using molecular beam techniques. Diamond and Related Materials, 1996, 5, 231-235.	1.8	13
486	Tailoring the Electron Affinity and Electron Emission of Diamond (100) 2 × 1 by Surface Functionalization Using an Organic Semiconductor. Chemistry of Materials, 2008, 20, 6871-6879.	3.2	13

KianPing Loh

#	Article	IF	CITATIONS
487	Negative differential resistance based on electron injection/extraction in conducting organic films. Applied Physics Letters, 2009, 95, 063301.	1.5	13
488	Wrinkle-free graphene with spatially uniform electrical properties grown on hot-pressed copper. Nano Research, 2015, 8, 1075-1080.	5.8	13
489	Analyzing Dirac Cone and Phonon Dispersion in Highly Oriented Nanocrystalline Graphene. ACS Nano, 2016, 10, 1681-1689.	7.3	13
490	Epitaxial Growth of Singleâ€Layer Niobium Selenides with Controlled Stoichiometric Phases. Advanced Materials Interfaces, 2018, 5, 1800429.	1.9	13
491	On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. Journal of Applied Physics, 2019, 125, 230901.	1.1	13
492	Atomically Precise Single Metal Oxide Cluster Catalyst with Oxygenâ€Controlled Activity. Advanced Functional Materials, 2022, 32, .	7.8	13
493	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl ₃ . Journal of the American Chemical Society, 2022, 144, 5295-5303.	6.6	13
494	Reflection high-energy electron diffraction and low energy electron diffraction studies of the homoepitaxially grown diamond (111) and (001) surfaces. Diamond and Related Materials, 1999, 8, 693-700.	1.8	12
495	Direct observation of boron nitride nanocage growth by molecular beam nitridation and liquid-like motion of Fe–B nanoparticles. Journal of Materials Chemistry, 2003, 13, 2573-2576.	6.7	12
496	Electronic properties of graphene-single crystal diamond heterostructures. Journal of Applied Physics, 2013, 114, 053709.	1.1	12
497	Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition. 2D Materials, 2016, 3, 021001.	2.0	12
498	Adenomas involving the extrahepatic biliary tree are rare but have an aggressive clinical course. Endoscopy International Open, 2016, 04, E112-E117.	0.9	12
499	Self-cross-linked arrays enabled flexible mechanical sensors for monitoring the body tremor. Npj Flexible Electronics, 2020, 4, .	5.1	12
500	Strong Moiré Excitons in High-Angle Twisted Transition Metal Dichalcogenide Homobilayers with Robust Commensuration. Nano Letters, 2022, 22, 203-210.	4.5	12
501	Observation of a 6×6 superstructure on 6H–SiC (0001) by reflection high energy electron diffraction. Applied Physics Letters, 2000, 77, 3361-3363.	1.5	11
502	Structure of Co deposited 6H–SiC(0001). Surface Science, 2005, 595, 107-114.	0.8	11
503	Aggregation Dependent S1 and S2 Dual Emissions of Thiopheneâ^Acrylonitrileâ^Carbazole Oligomer. Crystal Growth and Design, 2008, 8, 2543-2546.	1.4	11
504	Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite. Scientific Reports, 2015, 5, 11430.	1.6	11

KianPing Loh

#	Article	IF	CITATIONS
505	Grapheneâ€Oxideâ€Catalyzed Direct CHâ~'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, 11014-11019.	1.6	11
506	Dense‧tacking Porous Conjugated Polymer as Reactive‶ype Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie, 2021, 133, 11460-11470.	1.6	11
507	Distinguishing the H3 and T4 silicon adatom model on 6H–SiC(0001) â^š3×â^š3R30° reconstruction by dynamic rocking beam approach. Journal of Chemical Physics, 2003, 119, 1789-1793.	1.2	10
508	Probing the interaction at the C60–SiC nanomesh interface. Surface Science, 2007, 601, 2994-3002.	0.8	10
509	Aggregates-induced dynamic negative differential resistance in conducting organic films. Applied Physics Letters, 2009, 95, .	1.5	10
510	Growing Suspended Graphene on C ₆₀ Molecules. Small, 2012, 8, 3728-3732.	5.2	10
511	Brightening the dark excitons. Nature Nanotechnology, 2017, 12, 837-838.	15.6	10
512	Hydrogen bond guided synthesis of close-packed one-dimensional graphdiyne on the Ag(111) surface. Chemical Science, 2019, 10, 10849-10852.	3.7	10
513	Divergent Chemistry Paths for 3D and 1D Metalloâ€Covalent Organic Frameworks (COFs). Angewandte Chemie, 2020, 132, 11624-11629.	1.6	10
514	An Anomalous Magneto-Optic Effect in Epitaxial Indium Selenide Layers. Nano Letters, 2020, 20, 5330-5338.	4.5	10
515	Supported Gold Catalysts for Selective Oxidation of Organics. Science of Advanced Materials, 2011, 3, 970-983.	0.1	10
516	An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery. Energy Storage Materials, 2022, 49, 1-10.	9.5	10
517	Learning motifs and their hierarchies in atomic resolution microscopy. Science Advances, 2022, 8, eabk1005.	4.7	10
518	Growth and mechanistic studies of diamond formation by chemical beam epitaxy using methyl and acetylene precursors. Journal of Crystal Growth, 1996, 164, 208-213.	0.7	9
519	Photoelectron spectroscopy studies of barium films on diamond with respect to the modification of negative electron affinity characteristics. Diamond and Related Materials, 1998, 7, 651-655.	1.8	9
520	High resolution transmission electron microscopy study of the initial growth of diamond on silicon. Diamond and Related Materials, 2000, 9, 1703-1707.	1.8	9
521	Study of negative-bias temperature-instability-induced defects using first-principle approach. Applied Physics Letters, 2003, 83, 3063-3065.	1.5	9
522	Plasma deposition of low dielectric constant (k=2.2â^¼2.4) Boron Nitride on methylsilsesquioxane-based nanoporous films. Journal of Applied Physics, 2004, 96, 6679-6684.	1.1	9

#	Article	IF	CITATIONS
523	Surface Plasmon Resonance Spectroscopy and Electrochemistry Study of 4-Nitro-1,2-phenylenediamine: A Switchable Redox Polymer with Nitro Functional Groups. Langmuir, 2006, 22, 3929-3935.	1.6	9
524	Chemisorption-Induced Polarization of Boron Nitride Nanotube. Journal of Physical Chemistry C, 2008, 112, 10279-10286.	1.5	9
525	Two-probe study of hot carriers in reduced graphene oxide. Journal of Applied Physics, 2011, 109, 084322.	1.1	9
526	Trap Levels in Graphene Oxide: A Thermally Stimulated Current Study. ECS Solid State Letters, 2012, 2, M17-M19.	1.4	9
527	Paraneoplastic Autoimmune Hemolytic Anemia in Ovarian Cancer: A Marker of Disease Activity. Rare Tumors, 2015, 7, 4-7.	0.3	9
528	Studying Edge Defects of Hexagonal Boron Nitride Using High-Resolution Electron Energy Loss Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 4189-4193.	2.1	9
529	Bose–Einstein oscillators and the excitation mechanism of free excitons in 2D layered organic–inorganic perovskites. RSC Advances, 2017, 7, 18366-18373.	1.7	9
530	Rashba–Edelstein Effect in the hâ€BN Van Der Waals Interface for Magnetization Switching. Advanced Materials, 2022, 34, .	11.1	9
531	Atomic hydrogen beam etching of carbon superstructures on 6H-SiC (0001) studied by reflection high-energy electron diffraction. Diamond and Related Materials, 2001, 10, 1218-1223.	1.8	8
532	Ultrathin oxide interfaces on 6H–SiC formed by plasma hydrogenation: Ultra shallow depth profile study. Journal of Applied Physics, 2002, 92, 5173-5176.	1.1	8
533	Deuterium-oxygen exchange on diamond (100)—a study by ERDA, RBS and TOF-SIMS. Diamond and Related Materials, 2002, 11, 1385-1390.	1.8	8
534	Chemisorption of C2Biradical and Acetylene on Reconstructed Diamond(111)-(2 × 1). Journal of Physical Chemistry B, 2003, 107, 985-993.	1.2	8
535	Atomic study of molecular wires composed of thiophene oligomers. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1876-1881.	0.8	8
536	Deposition of osmium and ruthenium thin films from organometallic cluster precursors. Applied Organometallic Chemistry, 2009, 23, 196-199.	1.7	8
537	Networked Spin Cages: Tunable Magnetism and Lithium Ion Storage via Modulation of Spin-Electron Interactions. Inorganic Chemistry, 2016, 55, 9892-9897.	1.9	8
538	One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays. , 2021, 3, 217-223.		8
539	Observation of Strong Valley Magnetic Response in Monolayer Transition Metal Dichalcogenide Alloys of Mo _{0.5} W _{0.5} Se ₂ and Mo _{0.5} W _{0.5} Se ₂ /WS ₂ Heterostructures. ACS Nano,	7.3	8
540	2021. 15. 8397-8406. Multifunctional Properties of a Zn(II) Coordination Complex. Crystal Growth and Design, 2021, 21, 3401-3408.	1.4	8

KianPing Loh

#	Article	IF	CITATIONS
541	High resolution electron energy loss and X-ray near edge absorption spectroscopic studies of diamond film functionalised with allyl alcohol. Diamond and Related Materials, 2006, 15, 711-715.	1.8	7
542	High resolution electron energy loss spectroscopy study of Zinc phthalocyanine and tetrafluoro tetracyanoquinodimethane on Au (111). Chemical Physics Letters, 2009, 468, 28-31.	1.2	7
543	A Nanosegregant Approach to Superwettable and Waterâ€Attracting Surfaces. Macromolecular Chemistry and Physics, 2010, 211, 2187-2192.	1.1	7
544	Polarizable energy-storage membrane based on ionic condensation and decondensation. Energy and Environmental Science, 2011, 4, 3960.	15.6	7
545	A Percolating Membrane with Superior Polarization and Power Retention for Rechargeable Energy Storage. Advanced Materials, 2012, 24, 76-81.	11.1	7
546	Compression-induced graphite nanoplatelets orientation in fibre-reinforced plastic composites. Composites Part B: Engineering, 2016, 90, 493-502.	5.9	7
547	Unusual Hole and Electron Midgap States and Orbital Reconstructions Induced Huge Ferroelectric Tunneling Electroresistance in BaTiO ₃ /SrTiO ₃ . Nano Letters, 2020, 20, 1101-1109.	4.5	7
548	Controllable phase transitions between multiple charge density waves in monolayer 1T-VSe2 via charge doping. Applied Physics Letters, 2021, 119, 163101.	1.5	7
549	Transient Reflection Spectroscopy on Ultrafast Interlayer Charge Transfer Processes in a MoS ₂ /WSe ₂ van der Waals Heterojunction. Journal of Physical Chemistry C, 2021, 125, 26575-26582.	1.5	7
550	Real‣pace Investigation of the Multiple Halogen Bonds by Ultrahighâ€Resolution Scanning Probe Microscopy. Small, 2022, 18, .	5.2	7
551	Elderlyâ€Onset Neuromyelitis Optica Spectrum Disorders. Journal of the American Geriatrics Society, 2015, 63, 411-412.	1.3	6
552	Orientation and Electronic Structures of Multilayered Graphene Nanoribbons Produced by Two-Zone Chemical Vapor Deposition. Langmuir, 2017, 33, 10439-10445.	1.6	6
553	Photocatalytic Hydrogen Evolution: Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donorâ€i€â€Acceptor Organic Molecule Heterostructures (Adv. Funct.) Tj ETQq1 1	0.77884314	rg&T /Overic
554	Visualization of Crystallographic Orientation and Twist Angles in Two-Dimensional Crystals with an Optical Microscope. Nano Letters, 2020, 20, 6059-6066.	4.5	6
555	Nanocrystalline diamond film grown by pulsed linear antenna microwave CVD. Diamond and Related Materials, 2021, 119, 108576.	1.8	6
556	Electron beam triggered single-atom dynamics in two-dimensional materials. Journal of Physics Condensed Matter, 2021, 33, 063001.	0.7	6
557	Two different domains in a cubic boron nitride (111) surface observed by friction force microscopy. Applied Physics Letters, 1998, 73, 2733-2735.	1.5	5
558	Reduction of Local Mechanical Stress in a Transistor Using Si[sub 3]N[sub 4]/SiO[sub x]N[sub y] Contact ESL. Electrochemical and Solid-State Letters, 2005, 8, G38.	2.2	5

#	Article	IF	CITATIONS
559	Kinetics of the Initial Oxidation of the (0001) 6Hâ^'SiC 3 × 3 Reconstructed Surface. Journal of Physical Chemistry C, 2008, 112, 16864-16868.	1.5	5
560	New scenarios of charge transport in PEDT:PSS conducting polymer: From hole resonant tunneling to cationic motion and relaxation. Organic Electronics, 2010, 11, 1432-1438.	1.4	5
561	Supercapacitive energy storage based on ionâ€conducting channels in hydrophilized organic network. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1234-1240.	2.4	5
562	Li–S Batteries: Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralongâ€Life Li–S Batteries (Adv. Energy Mater. 35/2018). Advanced Energy Materials, 2018, 8, 1870152.	10.2	5
563	Staging: Unraveling the Potassium Storage Mechanism in Graphite Foam (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970081.	10.2	5
564	Tuning photoresponse of graphene-black phosphorus heterostructure by electrostatic gating and photo-induced doping. Chinese Chemical Letters, 2022, 33, 368-373.	4.8	5
565	Sub-Angstrom Imaging of Nondegenerate Kekulé Structures in a Two-Dimensional Halogen-Bonded Supramolecular Network. Journal of Physical Chemistry C, 2022, 126, 4241-4247.	1.5	5
566	Unravelling a new many-body large-hole polaron in a transition metal oxide that promotes high photocatalytic activity. NPG Asia Materials, 2022, 14, .	3.8	5
567	Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites. Science Advances, 2022, 8, eabj0395.	4.7	5
568	Ab initio studies of hydrogen and oxygen chemisorptions on the cubic BN(111) surface. Surface Science, 2005, 599, 128-140.	0.8	4
569	A HREELS and DFT Study of the Adsorption of Aromatic Hydrocarbons on Diamond (111). Langmuir, 2010, 26, 3286-3291.	1.6	4
570	Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene. Scientific Reports, 2013, 3, 3404.	1.6	4
571	Graphene: Polymer composites as moisture barrier and charge transport layer toward solar cell applications. AIP Conference Proceedings, 2018, , .	0.3	4
572	Giant bipolar unidirectional photomagnetoresistance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
573	Reactive atom beam deposition of boron nitride ultrathin films and nanoparticles using borazine. Diamond and Related Materials, 2003, 12, 1103-1107.	1.8	3
574	Atomic force microscopy study of hexagonal boron nitride film growth on 6H-SiC (0001). Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 37-45.	0.8	3
575	Zinc Oxide Nanorod Arrays: Properties and Hydrothermal Synthesis. , 2007, , 92-117.		3
576	Spatial Effect of CH Dipoles on the Electron Affinity of Diamond (100)â€⊋×1 Adsorbed with Organic Molecules. ChemPhysChem, 2008, 9, 1338-1344.	1.0	3

		15	0
# 577	ARTICLE Effects and thermal stability of hydrogen microwave plasma treatment on tetrahedral amorphous carbon films by in situ ultraviolet photoelectron spectroscopy. Journal of Applied Physics, 2009, 106, 024901	1.1	CITATIONS 3
578	Embedded organic hetero-junction and negative-differential-resistance photocurrent based on bias-assisted natural-drying of organic drops. Organic Electronics, 2010, 11, 1543-1548.	1.4	3
579	Graphene mode locked ultrafast fiber lasers. , 2011, , .		3
580	Tissue Engineering: Fluorinated Graphene for Promoting Neuroâ€Induction of Stem Cells (Adv. Mater.) Tj ETQq0	0 0 rgBT /	Ovgrlock 10 1
581	Patientsmate©: the implementation and evaluation of an online prospective audit system. Journal of Evaluation in Clinical Practice, 2012, 18, 365-368.	0.9	3
582	Singleâ€Molecule Chemical Reactions Tracked at the Atomicâ€Bond Level. Angewandte Chemie - International Edition, 2013, 52, 13521-13523.	7.2	3
583	Molecular Electronics: Noncovalent Selfâ€Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions (Adv. Mater. 4/2016). Advanced Materials, 2016, 28, 784-784.	11.1	3
584	Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Research, 2022, 15, 2741-2745.	5.8	3
585	Dynamic Tuning of Moiré Superlattice Morphology by Laser Modification. ACS Nano, 2022, 16, 8172-8180.	7.3	3
586	Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation. Chemical Research in Chinese Universities, 2022, 38, 1239-1242.	1.3	3
587	Diamond growth chemistry: Its observation using real time in situ molecular beam scattering techniques. Diamond and Related Materials, 1997, 6, 219-223.	1.8	2
588	Reactive chemistry of C2Hx species on CVD diamond. Diamond and Related Materials, 1998, 7, 243-246.	1.8	2
589	Graphene Properties and Application. , 2014, , 565-583.		2
590	Gastrointestinal: Incidentally detected gastric carcinoma in patient with common variable immunoglobulin deficiency. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1127-1127.	1.4	2
591	Molybdenum Disulfid: Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870360.	11.1	2
592	Coupling (reduced) Graphene Oxide to Mammalian Primary Cortical Neurons In Vitro . AIMS Materials Science, 2015, 2, 217-229.	0.7	2
593	SURFACE CHARACTERISTICS OF THICK, FREE-STANDING DIAMOND FILM PREPARED BY CHEMICAL ETCHING AND RAPID THERMAL PROCESSING. Surface Review and Letters, 2001, 08, 477-482.	0.5	1
594	Growth of Co Nanoclusters on SiC Honeycomb Templates. Materials Research Society Symposia Proceedings, 2004, 818, 305.	0.1	1

#	Article	IF	CITATIONS
595	Ferromagnetic dot encapsulated Boron Nitride nano-structured arrays. Diamond and Related Materials, 2004, 13, 1116-1119.	1.8	1
596	Vertically Aligned Single Crystalline ZnO Nanorods Grown by Hydrothermal Synthesis and the Theoretical Model for Predicting the Rod Density. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	1
597	Atomic multi-layer graphene for dissipative soliton generation in Ytterbium-doped fiber laser. , 2010, , .		1
598	Energy Storage: A Percolating Membrane with Superior Polarization and Power Retention for Rechargeable Energy Storage (Adv. Mater. 1/2012). Advanced Materials, 2012, 24, 75-75.	11.1	1
599	Enhanced efficiency of phenothiazine derivative organic dyeâ€sensitized ionic liquid solar cells on aging. Progress in Photovoltaics: Research and Applications, 2013, 21, 525-533.	4.4	1
600	An Unusual Cause of Delirium and Debility: Refractory Hypercalcemia in a Man with <scp>B</scp> ell Prolymphocytic Leukemia. Journal of the American Geriatrics Society, 2014, 62, 2021-2022.	1.3	1
601	Graphene Photodetectors: Large-Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector (Adv. Electron. Mater.) Tj ETQq1 1 0.7	84 2.1 ⁄4 rgE	3T /Dverlock
602	Controlled Growth of Graphene Crystals by Chemical Vapor Deposition: From Solid Metals to Liquid Metals. , 2017, , 238-256.		1
603	Co-milling-assisted exfoliated graphite nanoplatelets filler introduction in polyethylene and alumina composites. Journal of Composite Materials, 2019, 53, 1815-1826.	1.2	1
604	Evaluation of PECVD deposited Boron Nitride as Copper Diffusion Barrier on Porous Low-k Materials. Materials Research Society Symposia Proceedings, 2004, 812, F2.9.1.	0.1	0
605	Growth of Bismuth Sulfide Nanowire Using Bismuth Trisxanthate Single Source Precursors ChemInform, 2004, 35, no.	0.1	0
606	Solution-Processable Polyphenylphenyl Dendron Bearing Molecules for Highly Efficient Blue Light-Emitting Diodes ChemInform, 2005, 36, no.	0.1	0
607	Electrochemical Characteristics of Self Assembled Monolayers of Oligothiophenes. , 2006, , .		0
608	Electrochemical Characteristics of Self Assembled Monolayers of Oligothiophenes. , 0, , .		0
609	Assembly of Tailored Thiophene Oligomers on Gold Electrodes - Film Formation and Properties. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
610	Interface modification using solution-processed liquid-functionalized carbon nanoparticles for highly efficient polymer solar cells. , 2010, , .		0
611	Application of graphene in tandem organic solar cells. , 2011, , .		0
612	Diffusion and energy relaxation of hot carriers in graphene. , 2011, , .		0

#	Article	IF	CITATIONS
613	Graphene: Growing Suspended Graphene on C ₆₀ Molecules (Small 24/2012). Small, 2012, 8, 3727-3727.	5.2	0
614	Femtosecond Carrier Dynamics and Saturable Absorption in Functionalized Epitaxial Graphene. Procedia Engineering, 2012, 36, 583-588.	1.2	0
615	Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 0, 545, 21-26.	0.3	0

616 Innenrücktitelbild: Room-Temperature Ice Growth on Graphite Seeded by Nano-Graphene Oxide (Angew.) Tj ETQq000 rgBT/Overlock

617	Publisher's Note: Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission [Phys. Rev. B 88 , 205405 (2013)]. Physical Review B, 2014, 90, .	1.1	0
618	Hierarchical Structures: Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics (Adv. Funct. Mater. 6/2014). Advanced Functional Materials, 2014, 24, 730-730.	7.8	0
619	Nonconvulsive Status Epilepticus: Master of Disguise. Journal of the American Geriatrics Society, 2015, 63, 1038-1039.	1.3	Ο
620	Abnormal behavior of potassium adsorbed phosphorene. International Journal of Computational Materials Science and Engineering, 2017, 06, 1850002.	0.5	0
621	Molecular Diodes: Stable Molecular Diodes Based on π–π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870069.	11.1	0
622	Frontispiz: Graphene-Oxide-Catalyzed Direct CHâ^'CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, .	1.6	0
623	Dislocation-Driven Growth of Two-Dimensional Lateral Quantum Well Superlattices. Microscopy and Microanalysis, 2018, 24, 88-89.	0.2	0
624	Engineering and Modifying Two-Dimensional Materials via Electron Beams. Microscopy and Microanalysis, 2019, 25, 1474-1475.	0.2	0
625	Outside Front Cover: Volume 2 Issue 1. SmartMat, 2021, 2, i.	6.4	0
626	Fe -INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65.	0.0	0
627	The substrate influence on the optoelectronic properties of 2D materials. , 2018, , .		0
628	Giant and Tunable Optical Nonlinearity in Single-Crystalline 2D Perovskites due to Excitonic and Plasma Effects. , 2019, , .		0