
David Av Morton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the dynamic properties of silk particles by co-spray drying with L-leucine. Advanced Powder Technology, 2022, 33, 103556.	4.1	2
2	3D printing of tuneable agglomerates: Strain distribution and effect of internal flaws. Advanced Powder Technology, 2020, 31, 2711-2722.	4.1	2
3	Understanding the Impacts of Surface Compositions on the In-Vitro Dissolution and Aerosolization of Co-Spray-Dried Composite Powder Formulations for Inhalation. Pharmaceutical Research, 2019, 36, 6.	3.5	14
4	The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders. International Journal of Pharmaceutics, 2018, 537, 64-72.	5.2	19
5	To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Frontiers in Pharmacology, 2018, 9, 1199.	3.5	131
6	A strategy to evaluate the surface energy of high packing efficiency fine powders via inverse gas chromatography. Powder Technology, 2017, 320, 470-473.	4.2	1
7	Single-step Coprocessing of Cohesive Powder via Mechanical Dry Coating for Direct Tablet Compression. Journal of Pharmaceutical Sciences, 2017, 106, 159-167.	3.3	29
8	Effect of the deformability of guest particles on the tensile strength of tablets from interactive mixtures. International Journal of Pharmaceutics, 2016, 514, 341-352.	5.2	1
9	Applying surface energy derived cohesive–adhesive balance model in predicting the mixing, flow and compaction behaviour of interactive mixtures. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 110-116.	4.3	20
10	Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102, 168-177.	4.3	19
11	Investigation of the Changes in Aerosolization Behavior Between the Jet-Milled and Spray-Dried Colistin Powders Through Surface Energy Characterization. Journal of Pharmaceutical Sciences, 2016, 105, 1156-1163.	3.3	27
12	Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: The use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. Powder Technology, 2016, 287, 248-255.	4.2	20
13	Editorial (Thematic Issue: Advances in Particle Engineering and Powder Technology for) Tj ETQq1 1 0.784314 rgBT	- /Overlock 1.9	10 Tf 50 20
14	The Kinetics of De-agglomeration of Magnesium Stearate Dry-Coated Salbutamol Sulphate Powders. KONA Powder and Particle Journal, 2015, 32, 131-142.	1.7	4
15	Relationship between surface concentration of l-leucine and bulk powder properties in spray dried formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 160-169.	4.3	72
16	The role of physico-chemical and bulk characteristics of co-spray dried l-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures. International Journal of Pharmaceutics, 2015, 479, 338-348.	5.2	18
17	Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders. European Journal of Pharmaceutical Sciences, 2015, 78, 264-272.	4.0	38
18	Spray-Dried Influenza Antigen with Trehalose and Leucine Produces an Aerosolizable Powder Vaccine Formulation that Induces Strong Systemic and Mucosal Immunity after Pulmonary Administration. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 361-371.	1.4	42

DAVID AV MORTON

#	Article	IF	CITATIONS
19	Optimizing aerosolization of a high-dose L-arginine powder for pulmonary delivery. Asian Journal of Pharmaceutical Sciences, 2015, 10, 528-540.	9.1	11
20	Predicting Tablet Strength from the Wet Granulation Conditions via the Unified Compaction Curve. Procedia Engineering, 2015, 102, 517-526.	1.2	5
21	Pharmaceutical dry powder blending and scale-up: Maintaining equivalent mixing conditions using a coloured tracer powder. Powder Technology, 2015, 270, 461-469.	4.2	25
22	Relationship between processing, surface energy and bulk properties of ultrafine silk particles. Powder Technology, 2015, 270, 112-120.	4.2	21
23	Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties. Current Pharmaceutical Design, 2015, 21, 5877-5889.	1.9	46
24	On the Methods to Measure Powder Flow. Current Pharmaceutical Design, 2015, 21, 5751-5765.	1.9	27
25	Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms. Current Pharmaceutical Design, 2015, 21, 5802-5814.	1.9	23
26	An insight into powder entrainment and drug delivery mechanisms from a modified Rotahaler®. International Journal of Pharmaceutics, 2014, 477, 351-360.	5.2	18
27	Effect of Surface Coating with Magnesium Stearate via Mechanical Dry Powder Coating Approach on the Aerosol Performance of Micronized Drug Powders from Dry Powder Inhalers. AAPS PharmSciTech, 2013, 14, 38-44.	3.3	53
28	Importance of particle size and shape on the tensile strength distribution and de-agglomeration of cohesive powders. Powder Technology, 2013, 249, 297-303.	4.2	19
29	Application of the unified compaction curve to link wet granulation and tablet compaction behaviour. Powder Technology, 2013, 240, 103-115.	4.2	23
30	Designing a Multicomponent Spray-Dried Formulation Platform for Pulmonary Delivery of Biomacromolecules: The Effect of Polymers on the Formation of an Amorphous Matrix for Glassy State Stabilization of Biomacromolecules. Drying Technology, 2013, 31, 1451-1458.	3.1	20
31	The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 234-243.	4.3	115
32	Colistin Powders with High Aerosolisation Efficiency for Respiratory Infection: Preparation and In Vitro Evaluation. Journal of Pharmaceutical Sciences, 2013, 102, 3736-3747.	3.3	49
33	Pulmonary Delivery of an Ultra-Fine Oxytocin Dry Powder Formulation: Potential for Treatment of Postpartum Haemorrhage in Developing Countries. PLoS ONE, 2013, 8, e82965.	2.5	20
34	Powder Strength Distributions for Understanding De-agglomeration of Lactose Powders. Pharmaceutical Research, 2012, 29, 2926-2935.	3.5	22
35	Dissolution of a poorly water-soluble drug dry coated with magnesium and sodium stearate. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 443-452.	4.3	24
36	Drug–lactose binding aspects in adhesive mixtures: Controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces. Advanced Drug Delivery Reviews, 2012, 64, 275-284.	13.7	95

DAVID AV MORTON

#	Article	IF	CITATIONS
37	Insight into pressure drop dependent efficiencies of dry powder inhalers. European Journal of Pharmaceutical Sciences, 2012, 46, 142-148.	4.0	27
38	Ultrafine wool powders and their bulk properties. Powder Technology, 2012, 224, 183-188.	4.2	31
39	Determination of the Polar and Total Surface Energy Distributions of Particulates by Inverse Gas Chromatography. Langmuir, 2011, 27, 521-523.	3.5	79
40	Counter-intuitive enhancement in the dissolution of indomethacin with the incorporation of cohesive poorly water-soluble inorganic salt additives. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 674-682.	4.3	3
41	New developments in dry powder pulmonary vaccine delivery. Trends in Biotechnology, 2011, 29, 191-198.	9.3	109
42	Investigating the interactions of amino acid components on a mannitol-based spray-dried powder formulation for pulmonary delivery: A design of experiment approach. International Journal of Pharmaceutics, 2011, 421, 220-229.	5.2	51
43	The kinetics of cohesive powder de-agglomeration from three inhaler devices. International Journal of Pharmaceutics, 2011, 421, 72-81.	5.2	15
44	Structural influence of cohesive mixtures of salbutamol sulphate and lactose on aerosolisation and de-agglomeration behaviour under dynamic conditions. European Journal of Pharmaceutical Sciences, 2011, 42, 210-219.	4.0	22
45	Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate. European Journal of Pharmaceutical Sciences, 2011, 43, 325-333.	4.0	42
46	Kinetics of emitted mass—A study with three dry powder inhaler devices. Chemical Engineering Science, 2011, 66, 5284-5292.	3.8	23
47	Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approach. Journal of Pharmaceutical Sciences, 2011, 100, 3421-3430.	3.3	73
48	Understanding improved dissolution of indomethacin through the use of cohesive poorly waterâ€soluble aluminium hydroxide: Effects of concentration and particle size distribution. Journal of Pharmaceutical Sciences, 2011, 100, 4269-4280.	3.3	8
49	An approach to characterising the cohesive behaviour of powders using a flow titration aerosolisation based methodology. Chemical Engineering Science, 2011, 66, 1640-1648.	3.8	26
50	Investigation of the extent of surface coating via mechanofusion with varying additive levels and the influences on bulk powder flow properties. International Journal of Pharmaceutics, 2011, 413, 36-43.	5.2	61
51	Effect of mechanical dry particle coating on the improvement of powder flowability for lactose monohydrate: A model cohesive pharmaceutical powder. Powder Technology, 2011, 207, 414-421.	4.2	54
52	Effect of host particle size on the modification of powder flow behaviours for lactose monohydrate following dry coating. Dairy Science and Technology, 2010, 90, 237-251.	2.2	18
53	Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders. European Journal of Pharmaceutical Sciences, 2010, 40, 412-421.	4.0	81
54	Improving Powder Flow Properties of a Cohesive Lactose Monohydrate Powder by Intensive Mechanical Dry Coating. Journal of Pharmaceutical Sciences, 2010, 99, 969-981.	3.3	88

DAVID AV MORTON

#	Article	IF	CITATIONS
55	Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach. International Journal of Pharmaceutics, 2010, 394, 50-59.	5.2	95
56	Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opinion on Drug Delivery, 2010, 7, 663-679.	5.0	106
57	The Role of Force Control Agents in High-Dose Dry Powder Inhaler Formulations. Journal of Pharmaceutical Sciences, 2009, 98, 2770-2783.	3.3	71
58	Short-term changes in drug agglomeration within interactive mixtures following blending. International Journal of Pharmaceutics, 2009, 372, 1-11.	5.2	9
59	Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab on A Chip, 2009, 9, 2184.	6.0	151
60	Liquid Crystalline Coated Drug Particles as a Potential Route to Long Acting Intravitreal Steroids. Current Drug Delivery, 2009, 6, 322-331.	1.6	4
61	The Influence of Force Control Agents on the Cohesive-Adhesive Balance in Dry Powder Inhaler Formulations. KONA Powder and Particle Journal, 2005, 23, 109-121.	1.7	89
62	The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations I: Direct Quantification by Atomic Force Microscopy. Pharmaceutical Research, 2004, 21, 1591-1597.	3.5	178
63	The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations II: Influence on Fine Particle Delivery Characteristics. Pharmaceutical Research, 2004, 21, 1826-1833.	3.5	108
64	Active and intelligent inhaler device development. International Journal of Pharmaceutics, 2004, 277, 31-37.	5.2	37
65	Reactivity of bis(diphenylphosphino) methane at a di-iron centre: thermally induced rearrangements of dimetallacyclopentenone complexes [Fe2(CO)5{μ-Ïf:η3-C(O)CRCr}(μ-dppm)]. Inorganica Chimica Acta, 1996, 251, 167-176.	2.4	10
66	Reactions of [Fe2(CO)6(μ-CO)(μ-dppm)] with alkynes: Stepwise synthesis of tropone at a dinuclear metal centre. Polyhedron, 1995, 14, 2723-2743.	2.2	24
67	Aerosol penetration through capillaries and leaks: Experimental studies on the influence of pressure. Journal of Aerosol Science, 1995, 26, 353-367.	3.8	17
68	Reactivity of allene at phosphine-bridged di-iron centres: X-ray crystal structures of [Fe2(CO)5{î¼-ïƒ,î·3-C(O)C(CH2)2}(μ-dppm)] and [Fe2(CO)4{î¼,î·3,î·3′-(CH2)2C2(CH2)2}(î¼-dppm)]·Et2(Chimica Acta, 1994, 220, 201-214.).ଥAorgan	ic127
69	Phosphorus-carbon bond cleavage at a di-iron centre: synthesis of μ-phosphidomethyl complexes [Fe2(CO)6(μ-CH2PR2)(μ-PR2)] from [Fe2(CO)6(μ-R2PCH2PR2)]. Inorganica Chimica Acta, 1992, 198-200, 2	5 7-2 70.	31
70	Benzyne complexes of ruthenium: Models for dissociative chemisorption of benzene on a metal surface. Crystal structures of [Ru4(CO)10(μ-CO)(μ4-PR)(μ4-η4-C6H4)] (R = Ph and CH2NPh2), [Ru5(CO)13(μ4-PPh)(μ5-η6-C6H4)] and [Ru6(CO)12(μ4-PMe)2(μ3-η2-C6H4)2]. Journal of Organometallic (1990, 394, 385-415.	Chemistry,	40
71	Hydrogen production from ethanol catalysed by Group 8 metal complexes. Journal of the Chemical Society Dalton Transactions, 1989, , 489.	1.1	113
72	Molecular hydrogen complexes in catalysis: highly efficient hydrogen production from alcoholic substrates catalysed by ruthenium complexes. Journal of the Chemical Society Chemical Communications, 1988, , 1154.	2.0	147

#	Article	IF	CITATIONS
73	Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2′-bipyridyl)2]Cl. Journal of the Chemical Society Chemical Communications, 1987, .	2.0	82
74	Rapid thermal hydrogen production from 2,3-butanediol catalyzed by homogeneous rhodium catalysis. Polyhedron, 1987, 6, 2187-2189.	2.2	17