Mark R St J Foreman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109434/publications.pdf

Version: 2024-02-01

123 papers 4,754 citations

40 h-index

76294

65 g-index

124 all docs

124 docs citations

124 times ranked 2828 citing authors

#	Article	IF	CITATIONS
1	Organic Telluride Formation from Paint Solvents Under Gamma Irradiation. Nuclear Technology, 2022, 208, 1734-1744.	0.7	2
2	Tellurium Behavior in the Containment Sump: Dissolution, Redox, and Radiolysis Effects. Nuclear Technology, 2021, 207, 217-227.	0.7	4
3	Relative hemilabilities of H2B(az)2 (az = pyrazolyl, dimethylpyrazolyl, methimazolyl) chelates in the complexes $[M(\hat{l}-C3H5)(CO)2\{H2B(az)2\}]$ (M = Mo, W). Dalton Transactions, 2020, 49, 781-796.	1.6	8
4	Metal extraction from a deep eutectic solvent, an insight into activities. Physical Chemistry Chemical Physics, 2020, 22, 11012-11024.	1.3	23
5	Incineration of EV Lithium-ion batteries as a pretreatment for recycling – Determination of the potential formation of hazardous by-products and effects on metal compounds. Journal of Hazardous Materials, 2020, 393, 122372.	6.5	70
6	Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 13668-13679.	3.2	93
7	Synthesis and ligand substitution reactions of ΰ ⁴ - <i>B</i> , <i>S</i> , <i< td=""><td>1.6</td><td>9</td></i<>	1.6	9
8	Temperature effect on the distribution of lanthanides(III) in the perchlorate-malonamide-methyl isobutyl ketone systems. Journal of Chemical Thermodynamics, 2019, 131, 133-148.	1.0	5
9	Affinity of charcoals for different forms of radioactive organic iodine. Nuclear Engineering and Design, 2018, 328, 228-240.	0.8	20
10	Activity coefficients in deep eutectic solvents: implications for the solvent extraction of metals. New Journal of Chemistry, 2018, 42, 2006-2012.	1.4	15
11	Chemical interaction between sea-salt and tellurium, between 300 and 1180ÂK. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 535-543.	0.7	4
12	Reactor accident chemistry an update. Cogent Chemistry, 2018, 4, 1450944.	2.5	3
13	Characterization and Leaching of Neodymium Magnet Waste and Solvent Extraction of the Rare-Earth Elements Using TODGA. Journal of Sustainable Metallurgy, 2017, 3, 638-645.	1.1	41
14	Dihydrobis(methimazolyl)borato complexes of ruthenium and osmium. Dalton Transactions, 2017, 46, 14957-14972.	1.6	11
15	A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling. Journal of Cleaner Production, 2017, 167, 806-814.	4.6	44
16	Coordination of Trivalent Lanthanides with Bismalonamide Ligands: Implications for Liquid–Liquid Extraction. European Journal of Inorganic Chemistry, 2017, 2017, 4285-4298.	1.0	5
17	Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Advances, 2017, 7, 32100-32113.	1.7	107
18	Crystal structure and identification of resonance forms of diethyl 2-(3-oxoiso-1,3-dihydrobenzofuran-1-ylidene)malonate. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1576-1579.	0.2	6

#	Article	IF	CITATIONS
19	The Influence of Compatibilizer Addition and Gamma Irradiation on Mechanical and Rheological Properties of a Recycled WEEE Plastics Blend. Recycling, 2016, 1, 101-110.	2.3	16
20	The solvent extraction of rare earth elements from nitrate media with novel polyamides containing malonamide groups. Hydrometallurgy, 2016, 164, 24-30.	1.8	26
21	Crystal structures of two one-dimensional coordination polymers constructed from Mn2+ ions, chelating hexafluoro-acetylacetonate anions, and flexible bipyridyl bridging ligands. Journal of Structural Chemistry, 2016, 57, 1169-1175.	0.3	0
22	Targeting fluorescent lamp waste for the recovery of cerium, lanthanum, europium, gadolinium, terbium and yttrium. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2016, 125, 199-203.	0.6	12
23	Progress towards a process for the recycling of nickel metal hydride electric cells using a deep eutectic solvent. Cogent Chemistry, 2016, 2, 1139289.	2.5	30
24	Coordination networks of Cu2+ ions with 1,3-bis[2-(4-pyridyl)ethyl]benzene: Strong structure-directing role of the counter ion (nitrate, acetate and sulphate), leading to clusters, sheets and chains. Polyhedron, 2015, 102, 496-502.	1.0	1
25	Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions. Waste Management, 2015, 36, 289-296.	3.7	18
26	Dielectric strength of \hat{I}^3 -radiation cross-linked, high vinyl-content polyethylene. European Polymer Journal, 2015, 64, 101-107.	2.6	18
27	Stability of phenyl trifluoromethyl sulfone as diluent in a grouped actinide extraction process. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 287-291.	0.7	18
28	One-dimensional and two-dimensional coordination polymers constructed from Cd ²⁺ ions and flexible bipyridyl bridging ligands. Journal of Coordination Chemistry, 2015, 68, 1719-1732.	0.8	2
29	The structures of CyMe ₄ -BTBP complexes of americium(<scp>iii</scp>) and europium(<scp>iii</scp>) in solvents used in solvent extraction, explaining their separation properties. Dalton Transactions, 2015, 44, 18395-18402.	1.6	37
30	An introduction to serious nuclear accident chemistry. Cogent Chemistry, 2015, 1, 1049111.	2.5	16
31	N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide, a molecule for radiohalogenation of proteins and peptides. Applied Radiation and Isotopes, 2015, 96, 1-5.	0.7	10
32	Synthesis and Screening of <i>t</i> -Bu-CyMe ₄ -BTBP, and Comparison with CyMe ₄ -BTBP. Solvent Extraction and Ion Exchange, 2014, 32, 720-736.	0.8	11
33	Crystal structure of a layered coordination polymer based on a 44net containing Cd2+ions and 1,5-bis(pyridin-4-yl)pentane linkers. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 80-83.	0.2	0
34	Hexanoic acid as an alternative diluent in a GANEX process: feasibility study. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1261-1266.	0.7	4
35	Recycling of high purity selenium from CIGS solar cell waste materials. Waste Management, 2014, 34, 1775-1782.	3.7	54
36	A Comparison of Americium Extractions as a Function of Time using Two Bis-Triazine-Bipyridine Ligands in Long-Chained Alcohol Diluents. Separation Science and Technology, 2014, 49, 2060-2065.	1.3	8

#	Article	IF	Citations
37	Studies on the Solvent Extraction of Rare Earth Metals from Fluorescent Lamp Waste Using Cyanex 923. Solvent Extraction and Ion Exchange, 2014, 32, 650-668.	0.8	46
38	Extraction thermodynamics of Am(III) and Eu(III) using CyMe4-BTBP in various organic diluents. Journal of Chemical Thermodynamics, 2014, 76, 64-69.	1.0	16
39	An Organic Experiment on SN2 Chemistry which uses a Radioisotope that is used in Nuclear Medicine and is Relevant to Nuclear Accidents. Journal of Nuclear Energy Science and Power Generation Technology (discontinued), 2014, 03, .	0.1	0
40	Identification of the chemical inventory of different paint types applied in nuclear facilities. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1981-1999.	0.7	8
41	Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation. Waste Management, 2013, 33, 1478-1482.	3.7	16
42	Synthesis of I-131 labelled iodine species relevant during severe nuclear accidents in light water reactors. Radiochimica Acta, 2013, 101, 675-680.	0.5	16
43	Comparison of the Extraction as a Function of Time in Two GANEX Solvents: Influence of Metal Loading, Interfacial Tension, and Density. Solvent Extraction and Ion Exchange, 2013, 31, 604-616.	0.8	8
44	Fission product interactions with nitrogen donor ligands used for spent nuclear fuel treatment. Polyhedron, 2013, 50, 154-163.	1.0	23
45	A TBP/BTBP-Based GANEX Separation Process – Part 3: Fission Product Handling. Solvent Extraction and Ion Exchange, 2013, 31, 237-252.	0.8	19
46	An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Management, 2013, 33, 915-922.	3.7	86
47	Formation of organic iodides from containment paint ingredients caused by gamma irradiation. Journal of Nuclear Science and Technology, 2013, 50, 689-694.	0.7	23
48	The Influence of Extrusion Conditions on Mechanical and Thermal Properties of Virgin and Recycled PP, HIPS, ABS and Their Ternary Blends. International Polymer Processing, 2013, 28, 541-549.	0.3	10
49	Studies of a Solvent for GANEX Applications Containing CyMe ₄ -BTBP and DEHBA in Cyclohexanone. Separation Science and Technology, 2012, 47, 663-669.	1.3	33
50	Radon capture with silver exchanged zeolites. Radiochimica Acta, 2012, 100, 395-399.	0.5	8
51	Extraction Experiments after Radiolysis of a Proposed GANEX Solvent-The Effect of Time. Procedia Chemistry, 2012, 7, 123-129.	0.7	6
52	The Extraction of Silver and the Effect of Diluent, Ligand Side Group and Solvent Composition. Procedia Chemistry, 2012, 7, 239-244.	0.7	5
53	Aqueous complexation of palladium to prevent precipitation and extraction in a group actinide extraction system. Hydrometallurgy, 2012, 115-116, 71-76.	1.8	16
54	A TBP/BTBP-based GANEX Separation Processâ€"Part 2: Ageing, Hydrolytic, and Radiolytic Stability. Solvent Extraction and Ion Exchange, 2011, 29, 157-175.	0.8	65

#	Article	IF	CITATIONS
55	A TBP/BTBP-based GANEX Separation Process. Part 1: Feasibility. Solvent Extraction and Ion Exchange, 2010, 28, 437-458.	0.8	103
56	Development of a Novel GANEX Process. ACS Symposium Series, 2010, , 119-130.	0.5	11
57	Thermodynamics of Dissolution for Bis(triazine)â°'Bipyridine-Class Ligands in Different Diluents and Its Reflection on Extraction. Journal of Chemical & Engineering Data, 2010, 55, 5133-5137.	1.0	32
58	A TRLFS study on the complexation of Cm(iii) and Eu(iii) with 4-t-butyl-6,6′-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2′-bipyridine in a water/2-propanol mixture. Dalton Transactions, 2010, 39, 923-929.	1.6	53
59	Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe ₄ â€BTBP Molecule on a Genuine Fuel Solution. Solvent Extraction and Ion Exchange, 2009, 27, 97-106.	0.8	152
60	Influence of dose rate on the radiolytic stability of a BTBP solvent for actinide(III)/lanthanide(III) separation. Radiochimica Acta, 2009, 97, .	0.5	29
61	First 5f-element complexes with the tetradentate BTBP ligand. Synthesis and crystal structure of uranyl(VI) compounds with CyMe4BTBP. Radiochimica Acta, 2008, 96, .	0.5	23
62	Hydrogenation catalysts from used nickel metal hydride batteries. Green Chemistry, 2008, 10, 825.	4.6	1
63	Poly(methimazolyl)borato Nitrosyl Complexes of Molybdenum and Tungsten. Organometallics, 2008, 27, 4455-4463.	1.1	20
64	$Synthesis of the Ruthenaboratranes \\ [Ru(CS)(PPh3)\{B(mt)3\}](Ru→B)8 and \\ [Ru(CO)(CNR)\{B(mt)3\}](Ru→B)8 (mt = methimazolyl, R =) Tj ETQq0 0 0 rgB1$	⁻ /Ovearloch	₹ 1 076 f 50 377
65	An overview and historical look back at the solvent extraction using nitrogen donor ligands to extract and separate An(III) from Ln(III). Radiochimica Acta, 2008, 96, 225-233.	0.5	178
66	The behaviour of organic solvents containing C5-BTBP and CyMe4-BTBP at low irradiation doses. Radiochimica Acta, 2007, 95, 637-642.	0.5	37
67	Extraction Behavior of Nickel(II) using some of the BTBPâ€Class Ligands. Solvent Extraction and Ion Exchange, 2007, 25, 603-617.	0.8	20
68	Complexes formed between the quadridentate, heterocyclic molecules 6,6′-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and lanthanides(iii): implications for the partitioning of actinides(iii) and lanthanides(iii). Dalton Transactions, 2006, , 1645-1653.	1.6	195
69	Inhibiting radiolysis of BTP molecules by addition of nitrobenzene. Radiochimica Acta, 2006, 94, .	0.5	32
70	6,6′â€Bis(5,5,8,8â€ŧetramethylâ€5,6,7,8â€ŧetrahydroâ€benzo[1,2,4]triazinâ€3â€yl) [2,2′]bipyridine, an I Agent for the Separation of Americium(III) and Curium(III) from the Lanthanides. Solvent Extraction and Ion Exchange, 2006, 24, 463-483.	Effective E 0.8	xtracting 243
71	New bis(triazinyl) pyridines for selective extraction of americium(iii). New Journal of Chemistry, 2006, 30, 1171.	1.4	162
72	Separation of Actinides(III) from Lanthanides(III) in Simulated Nuclear Waste Streams using 6,6′â€Bisâ€(5,6â€dipentylâ€{1,2,4]triazinâ€3â€yl)â€{2,2′]bipyridinyl (C5â€BTBP) in Cyclohexanone. Solv lon Exchange, 2006, 24, 823-843.	entŒ s trac	ctio s 4nd

#	Article	IF	CITATIONS
73	Extraction Properties of 6,6′â€Bisâ€{5,6â€dipentylâ€{1,2,4]triazinâ€3â€yl)â€{2,2′]bipyridinyl (C5â€BTBP). S Extraction and Ion Exchange, 2006, 24, 299-318.	Solvent	83
74	Synthesis, structure, and redox states of homoleptic d-block metal complexes with bis-1,2,4-triazin-3-yl-pyridine and 1,2,4-triazin-3-yl-bipyridine extractants. Polyhedron, 2006, 25, 888-900.	1.0	47
75	Solvent extraction of Am(III) and Eu(III) from nitrate solution using synergistic mixtures of N-tridentate heterocycles and chlorinated cobalt dicarbollide. European Physical Journal D, 2006, 56, D459-D467.	0.4	1
76	6,6′-bis-(5,6-diethyl-[1,2,4]triazin-3-yl)-2,2′-bipyridyl the first example of a new class of quadridentate heterocyclic extraction reagents for the separation of americium(III) and europium(III). Inorganic Chemistry Communication, 2005, 8, 239-241.	1.8	131
77	The first rhodaboratrane: [RhCl(PPh3){B(mt)3}](Rhâ†'B) (mt = methimazolyl). Chemical Communications, 2005, , 221-223.	2.2	107
78	An Investigation into the Extraction of Americium(III), Lanthanides and Dâ€Block Metals by 6,6′â€Bisâ€(5,6â€dipentylâ€[1,2,4]triazinâ€3â€yl)â€[2,2′]bipyridinyl (C5â€BTBP). Solvent Extraction and Ic 23, 645-662.	oro Exchanş	g e, 02005,
79	Novel Heterobimetallic Coordination of the H2B(mt)2Ligand: The Complex [Mo(SnMe2Cl)(CO)3{ν-S:β3-H,S,Sâ€⁻-H2B(mt)2}] (mt = methimazolyl). Organometallics, 2005, 24, 5224-5226.	1.1	22
80	Structural studies of lanthanide complexes with tetradentate nitrogen ligands. Inorganica Chimica Acta, 2004, 357, 4102-4112.	1.2	37
81	Polyazolyl Chelate Chemistry. 13. An Osmaboratrane1. Organometallics, 2004, 23, 913-916.	1.1	108
82	Metallathiirenes. 5.1Bis- and Tris(methimazolyl)borato Thiocarbamoyl Complexes of Molybdenum(II). Organometallics, 2003, 22, 5593-5596.	1.1	44
83	Hydrotris(methimazolyl)borato Alkylidyne Complexes of Tungsten1. Organometallics, 2003, 22, 3831-3840.	1.1	75
84	Polyazolyl Chelate Chemistry. 12.1An Unusual Mode of Coordination for the Hydrotris(methimazolyl)borato Ligand. Organometallics, 2003, 22, 4446-4450.	1,1	113
85	Studies on the Parallel Synthesis and Evaluation of New Heterocyclic Extractants for the Partitioning of Minor Actinides. Solvent Extraction and Ion Exchange, 2003, 21, 637-652.	0.8	32
86	The coordination chemistry of 1,2,4-triazinyl bipyridines with lanthanide(iii) elements – implications for the partitioning of americium(iii). Dalton Transactions, 2003, , 1675-1685.	1.6	56
87	Polymeric diaqua(μ2-2,2′-bipyrimidinyl-κ4N1,N1′:N3,N3′)-di-μ3-hydroxy-bis(μ5-benzene-1,3,5-tricarboxylato-κ50 dihydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m487-m489.	Od.#O2:O3	3: 0 3:05)te
88	Hydrothermal crystallisation of metal (II) orotates (M=nickel, cobalt, manganese or zinc). Effect of 2,2-bipyridyl, 2,2-dipyridyl amine, 1-methyl-3-(2-pyridyl)pyrazole, phenanthroline and 2,9-dimethyl-1,10-phenanthroline upon structure. Inorganica Chimica Acta, 2002, 332, 135-145.	1.2	46
89			

#	Article	IF	Citations
91	Synthesis and characterisation of polymeric and oligomeric lead(II) carboxylates. Dalton Transactions RSC, 2001, , 1897-1903.	2.3	56
92	Synthesis and characterisation of polymeric manganese and zinc 5-hydroxyisophthalates. Polyhedron, 2001, 20, 2293-2303.	1.0	40
93	A new polymorph, formC, of [1,2-bis(diphenylphosphino)ethane]dichloronickel(II). Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 690-693.	0.4	3
94	Poly[[diaquacadmium(II)]-ν3-(1-carboxybenzene-3,5-dicarboxylato)]. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, m85-m87.	0.2	3
95	catena-Poly[[(2,2′-bipyridine-N,N′)cobalt(II)]-ν-4,4′-oxydibenzoato-O,O′:O′′,O′′′]. Act E: Structure Reports Online, 2001, 57, m169-m171.	a Grystallo	ographica Se
96	catena-Poly[[[(1,10-phenanthroline)manganese(II)]- $\hat{1}$ /4-(1-hydroxybenzene-3,5-dicarboxylato)] hydrate]. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, m373-m375.	0.2	5
97	The synthesis and characterization of N-(diphenylthiophosphinyl)-P-phenyl-thiophosphonamidic acid phenyl ester and related compounds chiral at phosphorus. Inorganic Chemistry Communication, 2001, 4, 36-40.	1.8	16
98	Synthesis of co-ordination networks from flexible bis-(4-pyridyl) ligands and cadmium salts Crystal Engineering, 2001, 4, 293-308.	0.7	45
99	Synthesis and characterisation of infinite coordination networks with 1,6-bis(4-pyridyl)hexane and copper nitrate. Crystal Engineering, 2001, 4, 319-328.	0.7	35
100	Hydrothermal synthesis of polymeric metal carboxylates from benzene-1,2,4,5-tetracarboxylic acid and benzene-1,2,4-tricarboxylic acid. Inorganica Chimica Acta, 2001, 315, 126-132.	1.2	80
101	Structures of Mn(II) thiocyanate co-ordination polymers from flexible bipyridyl ligands. Inorganica Chimica Acta, 2001, 318, 175-180.	1.2	33
102	One-dimensional structures of nickel(II) and cobalt(II) coordination complexes {[ML2(H2O)2]·L·H2O·(ClO4)2} (M=Co or Ni; L=1,3-bis(4-pyridyl)propane). Inorganica Chimica Acta, 2001, 318, 171-174.	1.2	37
103	Synthesis and characterisation of polymeric metal-ion carboxylates from benzene-1,3,5-tricarboxylic acid with Mn(II), Co(II) or Zn(II) and 2,2-bipyridyl, phenanthroline or a pyridyl-2-(1-methyl-1H-pyrazol-3-yl) derivative. Inorganica Chimica Acta, 2001, 319, 159-175.	1.2	61
104	Synthesis of MXOY and Related Rings. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 297-300.	0.8	0
105	Hydrothermal synthesis and characterisation of lead(II) benzene-1,3,5-tricarboxylate [Pb3BTC2]·H2O: a lead(II) carboxylate polymer. Inorganic Chemistry Communication, 2000, 3, 234-238.	1.8	87
106	One-dimensional structures of manganese(II), copper(II) and cobalt(II) coordination complexes [MnII(hfac)2L] (hfac=hexafluoroacetylacetonate anion; L=4,4-bipyridyl), [CuII(hfac)2L] (L=1,3-dipyridylpropane or 4,4-bipyridyl-N,N′-dioxide) and [CoII(hfac)2L] (L=4,4-bipyridyl-N,N′-dioxide). Inorganica Chimica Acta, 2000, 303, 132-136.	1.2	47
107	Title is missing!. Journal of Chemical Crystallography, 2000, 30, 155-158.	0.5	6
108	Synthesis and crystal structure of $[Mn(NCS)2L2]$ (L = 3,6-bis-(2-methylpyridyl)-1,2-pyridazine). Journal of Chemical Crystallography, 2000, 30, 535-537.	0.5	5

#	Article	IF	Citations
109	Organo-P–S and P–Se heterocycles. Dalton Transactions RSC, 2000, , 1533-1543.	2.3	41
110	Synthesis and characterisation of infinite di- and tri-nuclear zinc co-ordination networks with flexible dipyridyl ligands. Dalton Transactions RSC, 2000, , 1995-2000.	2.3	80
111	Synthesis and characterisation of infinite co-ordination networks from flexible dipyridyl ligands and cadmium salts â€. Dalton Transactions RSC, 2000, , 3065-3073.	2.3	156
112	The preparation of a solubilized form of Lawessons reagent and its thionation reactions. Heteroatom Chemistry, 1999, 10, 651-657.	0.4	19
113	Crystallisation of H3BTC, H3TPO or H2SDA with MII (Mâ€=â€Co, Mn or Zn) and 2,2′-bipyridyl: design and control of co-ordination architecture, and magnetic properties (H3BTCâ€=â€benzene-1,3,5-tricarboxylic) Tj E³ of the Chemical Society Dalton Transactions. 1999 4209-4216.	TQq1 1 0.	784314 rgB
114	Coordination Networks with 1,3-Bis(4-pyridyl)propane. A Flexible Ligand Exhibiting Supramolecular Isomerism. Journal of Chemical Research Synopses, 1999, , 74-75.	0.3	16
115	Coordination Networks with 1,3-Bis(4-pyridyl)propane. A Flexible Ligand Exhibiting Supramolecular Isomerism. Journal of Chemical Research, 1999, 23, 74-75.	0.6	0
116	Title is missing!. Journal of Chemical Crystallography, 1998, 28, 653-656.	0.5	7
117	Hydrothermal Synthesis and Characterisation of M(pdc)·3H2O (pdc=2,5-pyridinedicarboxylate); M=Co, Ni, CoxNiy (x=0.4–0.6, y=0.6–0.4). Journal of Chemical Research Synopses, 1998, , 754-755.	0.3	21
118	Heterocycles from Diferrocenyl Dithiadiphosphetane Disulfide. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 124, 469-472.	0.8	4
119	Phosphorus–sulfur–nitrogen heterocycles from diferrocenyl dithiadiphosphetane disulfide. Chemical Communications, 1997, , 1269-1270.	2.2	12
120	Novel 1,2-thiaphosphetanes from diferrocenyldithiadiphosphetane disulfide. Chemical Communications, 1997, , 855-856.	2.2	24
121	2,4-Diferrocenyl-1,3-dithiadiphosphetane 2,4-disulfide; structure and reactions with catechols and [PtCl2(PR3)2](R = Et or Bun). Journal of the Chemical Society Dalton Transactions, 1996, , 3653.	1.1	53
122	Preparation and X-ray structure of a new organo-P–O–S heterocycle. Journal of the Chemical Society Chemical Communications, 1995, , 2217-2218.	2.0	8
123	Batch flowsheet test for a GANEX-type process: the CHALMEX FS-13 process. Solvent Extraction and Ion Exchange, 0, , 1-14.	0.8	6