## Arran Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109374/publications.pdf Version: 2024-02-01



Addan Fednandez

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | On some new properties of fractional derivatives with Mittag-Leffler kernel. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 444-462.                               | 1.7 | 237       |
| 2  | On a Fractional Operator Combining Proportional and Classical Differintegrals. Mathematics, 2020, 8, 360.                                                                                   | 1.1 | 193       |
| 3  | On Fractional Operators and Their Classifications. Mathematics, 2019, 7, 830.                                                                                                               | 1.1 | 147       |
| 4  | On fractional calculus with general analytic kernels. Applied Mathematics and Computation, 2019, 354, 248-265.                                                                              | 1.4 | 130       |
| 5  | Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 517-527.   | 1.7 | 114       |
| 6  | Hermiteâ€Hadamard inequalities in fractional calculus defined using Mittagâ€Leffler kernels.<br>Mathematical Methods in the Applied Sciences, 2021, 44, 8414-8431.                          | 1.2 | 73        |
| 7  | A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators.<br>Computational and Applied Mathematics, 2020, 39, 1.                                 | 1.0 | 45        |
| 8  | On some analytic properties of tempered fractional calculus. Journal of Computational and Applied<br>Mathematics, 2020, 366, 112400.                                                        | 1.1 | 42        |
| 9  | Solving PDEs of fractional order using the unified transform method. Applied Mathematics and Computation, 2018, 339, 738-749.                                                               | 1.4 | 38        |
| 10 | Some New Fractional-Calculus Connections between Mittag–Leffler Functions. Mathematics, 2019, 7,<br>485.                                                                                    | 1.1 | 35        |
| 11 | Classes of operators in fractional calculus: A case study. Mathematical Methods in the Applied Sciences, 2021, 44, 9143-9162.                                                               | 1.2 | 33        |
| 12 | Tempered and Hadamard-Type Fractional Calculus with Respect to Functions. Mediterranean Journal of Mathematics, 2021, 18, 1.                                                                | 0.4 | 33        |
| 13 | The mean value theorem and Taylor's theorem for fractional derivatives with Mittag–Leffler kernel.<br>Advances in Difference Equations, 2018, 2018, 86.                                     | 3.5 | 31        |
| 14 | Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2021, 97, 105735. | 1.7 | 31        |
| 15 | A complex analysis approach to Atangana–Baleanu fractional calculus. Mathematical Methods in the<br>Applied Sciences, 2021, 44, 8070-8087.                                                  | 1.2 | 30        |
| 16 | On Laplace transforms with respect to functions and their applications to fractional differential equations. Mathematical Methods in the Applied Sciences, 2023, 46, 8304-8323.             | 1.2 | 30        |
| 17 | Diffusion on Middle-ξ Cantor Sets. Entropy, 2018, 20, 504.                                                                                                                                  | 1.1 | 28        |
| 18 | Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations. Applied Mathematics and Computation, 2021, 409, 126400. | 1.4 | 28        |

Arran Fernandez

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Random Variables and Stable Distributions on Fractal Cantor Sets. Fractal and Fractional, 2019, 3, 31.                                                                                      | 1.6 | 26        |
| 20 | Fractal Calculus of Functions on Cantor Tartan Spaces. Fractal and Fractional, 2018, 2, 30.                                                                                                 | 1.6 | 25        |
| 21 | Explicit analytical solutions of incommensurate fractional differential equation systems. Applied Mathematics and Computation, 2021, 390, 125590.                                           | 1.4 | 22        |
| 22 | Operational Calculus for the Riemann–Liouville Fractional Derivative with Respect to a Function and its Applications. Fractional Calculus and Applied Analysis, 2021, 24, 518-540.          | 1.2 | 19        |
| 23 | Relations between fractional models with three-parameter Mittag-Leffler kernels. Advances in<br>Difference Equations, 2020, 2020, .                                                         | 3.5 | 19        |
| 24 | Weighted Fractional Calculus: A General Class of Operators. Fractal and Fractional, 2022, 6, 208.                                                                                           | 1.6 | 17        |
| 25 | On tempered fractional calculus with respect to functions and the associated fractional differential equations. Mathematical Methods in the Applied Sciences, 2022, 45, 11134-11157.        | 1.2 | 14        |
| 26 | On a new definition of fractional differintegrals with Mittag-Leffer kernel. Filomat, 2019, 33, 245-254.                                                                                    | 0.2 | 13        |
| 27 | Differintegration with Respect to Functions in Fractional Models Involving Mittag-Leffler Functions.<br>SSRN Electronic Journal, 2018, , .                                                  | 0.4 | 12        |
| 28 | Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus.<br>Fractal and Fractional, 2020, 4, 45.                                                    | 1.6 | 11        |
| 29 | On the fractional calculus of multivariate Mittag-Leffler functions. International Journal of Computer Mathematics, 2022, 99, 247-273.                                                      | 1.0 | 11        |
| 30 | On a New Class of Fractional Difference-Sum Operators with Discrete Mittag-Leffler Kernels.<br>Mathematics, 2019, 7, 772.                                                                   | 1.1 | 10        |
| 31 | On a certain bivariate Mittag‣effler function analysed from a fractionalâ€calculus point of view.<br>Mathematical Methods in the Applied Sciences, 2021, 44, 2600-2620.                     | 1.2 | 9         |
| 32 | On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators.<br>Fractal and Fractional, 2021, 5, 45.                                                   | 1.6 | 9         |
| 33 | On fractional calculus with analytic kernels with respect to functions. Computational and Applied<br>Mathematics, 2021, 40, 1.                                                              | 1.0 | 8         |
| 34 | A generalisation of the Malgrange–Ehrenpreis theorem to find fundamental solutions to fractional<br>PDEs. Electronic Journal of Qualitative Theory of Differential Equations, 2017, , 1-12. | 0.2 | 8         |
| 35 | An elliptic regularity theorem for fractional partial differential operators. Computational and Applied Mathematics, 2018, 37, 5542-5553.                                                   | 1.3 | 7         |
| 36 | Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous<br>Dynamical Systems - Series B, 2020, 25, 569-597.                                               | 0.5 | 7         |

Arran Fernandez

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mikusiński's operational calculus for Prabhakar fractional calculus. Integral Transforms and Special<br>Functions, 2022, 33, 945-965.                                           | 0.8 | 7         |
| 38 | Linear differential equations with variable coefficients and Mittag-Leffler kernels. AEJ - Alexandria<br>Engineering Journal, 2022, 61, 4757-4763.                              | 3.4 | 6         |
| 39 | Asymptotics to all orders of the Hurwitz zeta function. Journal of Mathematical Analysis and Applications, 2018, 465, 423-458.                                                  | 0.5 | 5         |
| 40 | Balance equations with generalised memory and the emerging fractional kernels. Nonlinear Dynamics, 2021, 104, 4149.                                                             | 2.7 | 5         |
| 41 | On nonâ€instantaneous impulsive fractional differential equations and their equivalent integral equations. Mathematical Methods in the Applied Sciences, 2021, 44, 13979-13988. | 1.2 | 5         |
| 42 | On the importance of conjugation relations in fractional calculus. Computational and Applied Mathematics, 2022, 41, .                                                           | 1.0 | 5         |
| 43 | Fractionalisation of complex d-bar derivatives. Complex Variables and Elliptic Equations, 2021, 66, 437-475.                                                                    | 0.4 | 4         |
| 44 | On the analytical development of incomplete Riemann–Liouville fractional calculus. Turkish Journal of Mathematics, 2021, 45, 1418-1443.                                         | 0.3 | 4         |
| 45 | The Lerch zeta function as a fractional derivative. Banach Center Publications, 0, 118, 113-124.                                                                                | 0.1 | 4         |
| 46 | A catalogue of semigroup properties for integral operators with Fox–Wright kernel functions.<br>Studies in Applied Mathematics, 2022, 148, 1477-1518.                           | 1.1 | 4         |
| 47 | Solving Prabhakar differential equations using Mikusiński's operational calculus. Computational and<br>Applied Mathematics, 2022, 41, 1.                                        | 1.0 | 4         |
| 48 | Interior Regularity Estimates for a Degenerate Elliptic Equation with Mixed Boundary Conditions.<br>Axioms, 2018, 7, 65.                                                        | 0.9 | 2         |
| 49 | Brownian Motion on Cantor Sets. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 275-281.                                                        | 0.4 | 2         |
| 50 | Characterising Extended Lipschitz Type Conditions with Moduli of Continuity. Results in Mathematics, 2021, 76, 1.                                                               | 0.4 | 2         |
| 51 | On linear fractional differential equationsÂwith variable coefficients. Applied Mathematics and Computation, 2022, 432, 127370.                                                 | 1.4 | 2         |
| 52 | Uniform asymptotics as a stationary point approaches an endpoint. IMA Journal of Applied<br>Mathematics, 2018, 83, 204-242.                                                     | 0.8 | 1         |
| 53 | Solving a well-posed fractional initial value problem by a complex approach. Fixed Point Theory and Algorithms for Sciences and Engineering, 2021, 2021,                        | 0.2 | 1         |
| 54 | Fractional differential relations for the Lerch zeta function. Archiv Der Mathematik, 2021, 117, 515-527.                                                                       | 0.3 | 1         |

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lipschitz and Fourier type conditions with moduli of continuity in rank 1 symmetric spaces.<br>Monatshefte Fur Mathematik, 2022, 197, 353-364.   | 0.5 | 1         |
| 56 | Editorial for Special Issue "Fractional Calculus and Special Functions with Applications― Fractal and Fractional, 2021, 5, 224.                  | 1.6 | 0         |
| 57 | MikusiÅ"ski's Operational Calculus Applied inÂGeneral Classes ofÂFractional Calculus. Lecture Notes in<br>Networks and Systems, 2022, , 171-176. | 0.5 | 0         |