
Mangal Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109259/publications.pdf Version: 2024-02-01

MANCAL ROY

#	Article	IF	CITATIONS
1	In vivo osteogenesis of plasma sprayed ternary-ion doped hydroxyapatite coatings on Ti6Al4V for orthopaedic applications. Ceramics International, 2022, 48, 11475-11488.	2.3	17
2	Effects of multiscale porosity and pore interconnectivity on <i>in vitro</i> and <i>in vivo</i> degradation and biocompatibility of Fe–Mn–Cu scaffolds. Journal of Materials Chemistry B, 2021, 9, 4340-4354.	2.9	12
3	Microstructure, mechanical, in vitro corrosion and biocompatibility response study of as-cast and as-rolled Mg–5Zn–0.5Zr alloy. MRS Advances, 2021, 6, 472-476.	0.5	1
4	In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy. Journal of Materials Science and Technology, 2021, 84, 159-172.	5.6	23
5	Effect of cerium-based conversion coating on corrosion behavior of squeeze cast Mg-4Âwt% Y alloy in 0.1ÂM NaCl solution. Surface and Coatings Technology, 2021, 421, 127451.	2.2	38
6	Decellularized xenogenic cartilage extracellular matrix (ECM) scaffolds for the reconstruction of osteochondral defects in rabbits. Journal of Materials Chemistry B, 2021, 9, 4873-4894.	2.9	16
7	Degradability and in vivo biocompatibility of doped magnesium phosphate bioceramic scaffolds. Materials Letters, 2020, 259, 126892.	1.3	12
8	Effects of cerium addition on the corrosion resistance and biocompatibility of Mg–2Sr–1Zr Alloy. Journal of Materials Research, 2020, 35, 3124-3135.	1.2	5
9	Recent Developments in Magnesium Metal–Matrix Composites for Biomedical Applications: A Review. ACS Biomaterials Science and Engineering, 2020, 6, 4748-4773.	2.6	59
10	Anomalous in Vitro and in Vivo Degradation of Magnesium Phosphate Bioceramics: Role of Zinc Addition. ACS Biomaterials Science and Engineering, 2019, 5, 5097-5106.	2.6	13
11	Magnesium Silicate Bioceramics for Bone Regeneration: A Review. Journal of the Indian Institute of Science, 2019, 99, 261-288.	0.9	20
12	Effects of Sr doping on biodegradation and bone regeneration of magnesium phosphate bioceramics. Materialia, 2019, 5, 100211.	1.3	21
13	Synergistic Effects of Silicon/Zinc Doped Brushite and Silk Scaffolding in Augmenting the Osteogenic and Angiogenic Potential of Composite Biomimetic Bone Grafts. ACS Biomaterials Science and Engineering, 2019, 5, 1462-1475.	2.6	22
14	In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite. Materialia, 2019, 5, 100245.	1.3	19
15	Quantitative assessment of degradation, cytocompatibility, and in vivo bone regeneration of silicon-incorporated magnesium phosphate bioceramics. Journal of Materials Research, 2019, 34, 4024-4036.	1.2	10
16	<i>In Vitro</i> Biodegradation and <i>In Vivo</i> Biocompatibility of Forsterite Bio-Ceramics: Effects of Strontium Substitution. ACS Biomaterials Science and Engineering, 2019, 5, 530-543.	2.6	18
17	Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties. Materials Letters, 2019, 237, 323-327.	1.3	32
18	Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 89-98.	1.5	32

Mangal Roy

#	Article	IF	CITATIONS
19	Mechanical and <i>in vitro</i> degradation behavior of magnesiumâ€bioactive glass composites prepared by SPS for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 352-365.	1.6	27
20	In Vivo Biocompatibility of Zinc-Doped Magnesium Silicate Bio-Ceramics. ACS Biomaterials Science and Engineering, 2018, 4, 2126-2133.	2.6	18
21	Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Advanced Powder Technology, 2017, 28, 3204-3212.	2.0	37
22	Effect of zinc oxide doping on in vitro degradation of magnesium silicate bioceramics. Materials Letters, 2017, 207, 100-103.	1.3	18
23	Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement. Journal of Materials Chemistry B, 2015, 3, 8973-8982.	2.9	56
24	Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomaterialia, 2015, 17, 47-55.	4.1	156
25	Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium. Materials Science and Engineering C, 2015, 57, 294-303.	3.8	66
26	Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomaterials Science, 2013, 1, 74-82.	2.6	82
27	Resorbable Tricalcium Phosphates for Bone Tissue Engineering: Influence of <scp><scp>SrO</scp></scp> Doping. Journal of the American Ceramic Society, 2012, 95, 3095-3102.	1.9	12
28	Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomaterialia, 2012, 8, 3144-3152.	4.1	301
29	Mechanical, In vitro Antimicrobial, and Biological Properties of Plasma-Sprayed Silver-Doped Hydroxyapatite Coating. ACS Applied Materials & Interfaces, 2012, 4, 1341-1349.	4.0	167
30	Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012, 30, 546-554.	4.9	1,763
31	Mechanical property and in vitro biocompatibility of brushite cement modified by polyethylene glycol. Materials Science and Engineering C, 2012, 32, 2145-2152.	3.8	37
32	MgO-Doped Tantalum Coating on Ti: Microstructural Study and Biocompatibility Evaluation. ACS Applied Materials & Interfaces, 2012, 4, 577-580.	4.0	50
33	Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: Effect of strontium and magnesium doping. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2450-2461.	2.1	64
34	Laser surface modification of metallic biomaterials. Jom, 2011, 63, 94-99.	0.9	29
35	pH Tunable Fluorescent Calcium Phosphate Nanocomposite for Sensing and Controlled Drug Delivery. Advanced Engineering Materials, 2011, 13, B10-B17.	1.6	22
36	Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 258-265.	1.6	92

MANGAL ROY

#	Article	IF	CITATIONS
37	Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomaterialia, 2011, 7, 866-873.	4.1	77
38	Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surface and Coatings Technology, 2011, 205, 2785-2792.	2.2	216
39	Comparison of Tantalum and Hydroxyapatite Coatings on Titanium for Applications in Load Bearing Implants. Advanced Engineering Materials, 2010, 12, B637.	1.6	36
40	Bulk Processing of Hydroxyapatite Nanopowder Using Radio Frequency Induction Plasma. Journal of the American Ceramic Society, 2010, 93, 3720-3725.	1.9	13
41	In vitro antimicrobial and biological properties of laser assisted tricalcium phosphate coating on titanium for load bearing implant. Materials Science and Engineering C, 2009, 29, 1965-1968.	3.8	41
42	Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomaterialia, 2008, 4, 324-333.	4.1	157
43	Laser Surface Modification of Electrophoretically Deposited Hydroxyapatite Coating on Titanium.	1.9	27