
Xianwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109215/publications.pdf Version: 2024-02-01

XIANWEL WANC

#	Article	IF	CITATIONS
1	Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Science Immunology, 2016, 1, .	5.6	560
2	Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Research in Cardiology, 2018, 113, 5.	2.5	202
3	Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovascular Research, 2015, 107, 556-567.	1.8	192
4	Inflammation, Autophagy, and Apoptosis After Myocardial Infarction. Journal of the American Heart Association, 2018, 7, .	1.6	180
5	Hemodynamic Shear Stress <i>via</i> ROS Modulates PCSK9 Expression in Human Vascular Endothelial and Smooth Muscle Cells and Along the Mouse Aorta. Antioxidants and Redox Signaling, 2015, 22, 760-771.	2.5	160
6	Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Scientific Reports, 2013, 3, 1077.	1.6	159
7	Oxidative Stress and Lectin-Like Ox-LDL-Receptor LOX-1 in Atherogenesis and Tumorigenesis. Antioxidants and Redox Signaling, 2011, 15, 2301-2333.	2.5	151
8	Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7g. International Journal of Cardiology, 2013, 168, 1378-1385.	0.8	138
9	Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Molecular Cancer, 2020, 19, 58.	7.9	124
10	Effect of the carthamins yellow from Carthamus tinctorius L. on hemorheological disorders of blood stasis in rats. Food and Chemical Toxicology, 2009, 47, 1797-1802.	1.8	118
11	Inhibition of TLR4 Induces M2 Microglial Polarization and Provides Neuroprotection via the NLRP3 Inflammasome in Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 444.	1.4	112
12	LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovascular Research, 2014, 103, 619-628.	1.8	111
13	Current Concepts of the Role of Oxidized LDL Receptors in Atherosclerosis. Current Atherosclerosis Reports, 2012, 14, 150-159.	2.0	105
14	Oxidized LDL Receptor 1 (OLR1) as a Possible Link between Obesity, Dyslipidemia and Cancer. PLoS ONE, 2011, 6, e20277.	1.1	96
15	PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovascular Research, 2018, 114, 1738-1751.	1.8	96
16	DPP-4 Inhibitors Repress NLRP3 Inflammasome and Interleukin-1beta via GLP-1 Receptor in Macrophages Through Protein Kinase C Pathway. Cardiovascular Drugs and Therapy, 2014, 28, 425-432.	1.3	95
17	TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC Developmental Biology, 2014, 14, 21.	2.1	91
18	PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovascular Research, 2018, 114, 1145-1153.	1.8	88

#	Article	IF	CITATIONS
19	Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles. Hypertension, 2016, 67, 1006-1013.	1.3	72
20	Cross-Talk Between PCSK9 and Damaged mtDNA in Vascular Smooth Muscle Cells: Role in Apoptosis. Antioxidants and Redox Signaling, 2016, 25, 997-1008.	2.5	63
21	Advances in the molecular mechanisms of NLRP3 inflammasome activators and inactivators. Biochemical Pharmacology, 2020, 175, 113863.	2.0	62
22	PCSK9 regulates pyroptosis via mtDNA damage in chronic myocardial ischemia. Basic Research in Cardiology, 2020, 115, 66.	2.5	58
23	Endothelin-1 upregulation mediates aging-related cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2015, 80, 101-109.	0.9	54
24	NLRP3 inflammasome <i>via</i> IL-1β regulates PCSK9 secretion. Theranostics, 2020, 10, 7100-7110.	4.6	51
25	LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse. Gene Therapy, 2012, 19, 522-531.	2.3	46
26	Progress in understanding mitochondrial calcium uniporter complexâ€mediated calcium signalling: A potential target for cancer treatment. British Journal of Pharmacology, 2019, 176, 1190-1205.	2.7	43
27	Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein. Scientific Reports, 2015, 5, 16740.	1.6	42
28	Blood flow patterns regulate PCSK9 secretion via MyD88-mediated pro-inflammatory cytokines. Cardiovascular Research, 2020, 116, 1721-1732.	1.8	42
29	LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2013, 437, 62-66.	1.0	40
30	LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis. Canadian Journal of Physiology and Pharmacology, 2014, 92, 524-530.	0.7	40
31	Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H506-H513.	1.5	39
32	Potential Involvement of LOX-1 in Functional Consequences of Endothelial Senescence. PLoS ONE, 2011, 6, e20964.	1.1	38
33	Cross-talk between inflammation and angiotensin II: Studies based on direct transfection of cardiomyocytes with AT1R and AT2R cDNA. Experimental Biology and Medicine, 2012, 237, 1394-1401.	1.1	37
34	LOX-1 and Angiotensin Receptors, and Their Interplay. Cardiovascular Drugs and Therapy, 2011, 25, 401-17.	1.3	36
35	FGF18 Enhances Migration and the Epithelial-Mesenchymal Transition in Breast Cancer by Regulating Akt/GSK3β/l²-Catenin Signaling. Cellular Physiology and Biochemistry, 2018, 49, 1060-1073.	1.1	36
36	MicroRNA hsa-let-7g targets lectin-like oxidized low-density lipoprotein receptor-1 expression and inhibits apoptosis in human smooth muscle cells. Experimental Biology and Medicine, 2012, 237, 1093-1100.	1.1	35

#	Article	IF	CITATIONS
37	Hypoxia Induces Autophagy of Bone Marrow-Derived Mesenchymal Stem Cells via Activation of ERK1/2. Cellular Physiology and Biochemistry, 2014, 33, 1467-1474.	1.1	34
38	Regulation of autophagy and apoptosis in response to angiotensin II in HL-1 cardiomyocytes. Biochemical and Biophysical Research Communications, 2013, 440, 696-700.	1.0	33
39	DPP-4 inhibitors repress foam cell formation by inhibiting scavenger receptors through protein kinase C pathway. Acta Diabetologica, 2014, 51, 471-478.	1.2	33
40	MicroRNAs Involved in the Regulation of Postischemic Cardiac Fibrosis. Hypertension, 2013, 61, 751-756.	1.3	32
41	Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription. Toxicology and Applied Pharmacology, 2012, 259, 346-354.	1.3	31
42	Abrogation of lectin-like oxidized LDL receptor-1 attenuates acute myocardial ischemia-induced renal dysfunction by modulating systemic and local inflammation. Kidney International, 2012, 82, 436-444.	2.6	30
43	GLP-1 Agonists Inhibit ox-LDL Uptake in Macrophages by Activating Protein Kinase A. Journal of Cardiovascular Pharmacology, 2014, 64, 47-52.	0.8	30
44	Large Impact of Low Concentration Oxidized LDL on Angiogenic Potential of Human Endothelial Cells: A Microarray Study. PLoS ONE, 2012, 7, e47421.	1.1	28
45	Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression. Mediators of Inflammation, 2013, 2013, 1-11.	1.4	28
46	Hemodynamic shear stress modulates endothelial cell autophagy: Role of LOX-1. International Journal of Cardiology, 2015, 184, 86-95.	0.8	27
47	Modulation of myocardial injury and collagen deposition following ischaemia–reperfusion by linagliptin and liraglutide, and both together. Clinical Science, 2016, 130, 1353-1362.	1.8	27
48	Concentration polarization of ox-LDL activates autophagy and apoptosis via regulating LOX-1expression. Scientific Reports, 2013, 3, 2091.	1.6	26
49	COL1A1: A potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. International Journal of Oncology, 2018, 53, 1869-1880.	1.4	24
50	Tumor-derived factors impaired motility and immune functions of dendritic cells through derangement of biophysical characteristics and reorganization of cytoskeleton. Cytoskeleton, 2007, 64, 186-198.	4.4	23
51	Regulation of MSR-1 and CD36 in macrophages by LOX-1 mediated through PPAR-Î ³ . Biochemical and Biophysical Research Communications, 2013, 431, 496-500.	1.0	23
52	Effects of linagliptin and liraglutide on glucose- and angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in vitro. Acta Pharmacologica Sinica, 2016, 37, 1349-1358.	2.8	23
53	Effects of the Calcium-Activated Chloride Channel Inhibitors T16Ainh-A01 and CaCCinh-A01 on Cardiac Fibroblast Function. Cellular Physiology and Biochemistry, 2018, 49, 706-716.	1.1	22
54	Degradation of heparan sulfate proteoglycans enhances oxidized-LDL-mediated autophagy and apoptosis in human endothelial cells. Biochemical and Biophysical Research Communications, 2012, 426, 106-111.	1.0	20

#	Article	IF	CITATIONS
55	MSC exosome-mediated cardioprotection in ischemic mouse heart comparative proteomics of infarct and peri-infarct areas. Molecular and Cellular Biochemistry, 2021, 476, 1691-1704.	1.4	20
56	Lectin-like Oxidized Low-density Lipoprotein Receptor-1 (LOX-1) and Cardiac Fibroblast Growth. Hypertension, 2012, 60, 1437-1442.	1.3	19
57	LOX-1 in the maintenance of cytoskeleton and proliferation in senescent cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 2013, 60, 184-190.	0.9	19
58	LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains. Biochemical and Biophysical Research Communications, 2015, 467, 135-139.	1.0	19
59	Liraglutide Attenuates Myocardial Fibrosis via Inhibition of AT1R-Mediated ROS Production in Hypertensive Mice. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 179-188.	1.0	19
60	High Fat Diet Causes Renal Fibrosis in LDLr-null Mice Through MAPK-NF-ήB Pathway Mediated by Ox-LDL. Journal of Cardiovascular Pharmacology, 2014, 63, 158-166.	0.8	18
61	Delineation of the effects of angiotensin type 1 and 2 receptors on HL-1 cardiomyocyte apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 908-915.	2.2	16
62	NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovascular Drugs and Therapy, 2023, 37, 571-584.	1.3	16
63	Hepatocellular Carcinoma Cells Deteriorate the Biophysical Properties of Dendritic Cells. Cell Biochemistry and Biophysics, 2009, 55, 33-43.	0.9	15
64	LOX-1: A New Target for Therapy for Cardiovascular Diseases. Cardiovascular Drugs and Therapy, 2011, 25, 495-500.	1.3	15
65	Adverse Cardiovascular Effects of Anti-COVID-19 Drugs. Frontiers in Pharmacology, 2021, 12, 699949.	1.6	15
66	Dipeptidyl peptidase-4 inhibitors in cardioprotection: a promising therapeutic approach. Acta Diabetologica, 2013, 50, 827-835.	1.2	14
67	Lectin-like oxidized low-density lipoprotein receptor-1 regulates autophagy and Toll-like receptor 4 in the brain of hypertensive mice. Journal of Hypertension, 2015, 33, 525-533.	0.3	14
68	ANO1 regulates cardiac fibrosis via ATI-mediated MAPK pathway. Cell Calcium, 2020, 92, 102306.	1.1	14
69	Endothelial-to-Mesenchymal Transition: Role in Cardiac Fibrosis. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 3-11.	1.0	14
70	Improving abnormal hemorheological parameters in ApoE-/- mice by Ilex kudingcha total saponins. Clinical Hemorheology and Microcirculation, 2009, 42, 29-36.	0.9	13
71	Gene and MicroRNA Transcriptional Signatures of Angiotensin II in Endothelial Cells. Journal of Cardiovascular Pharmacology, 2015, 65, 123-129.	0.8	13
72	Lectin-Like ox-LDL Receptor-1 (LOX-1)–Toll-Like Receptor 4 (TLR4) Interaction and Autophagy in CATH.a Differentiated Cells Exposed to Angiotensin II. Molecular Neurobiology, 2015, 51, 623-632.	1.9	13

#	Article	IF	CITATIONS
73	LOX-1 Deletion Limits Cardiac Angiogenesis in Mice Given Angiotensin II. Cardiovascular Drugs and Therapy, 2014, 28, 441-446.	1.3	12
74	NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Frontiers in Cell and Developmental Biology, 2022, 10, 823387.	1.8	12
75	Hypertension, TLR4 activation in brain and cardiac hypertrophy. Cardiovascular Research, 2014, 103, 3-4.	1.8	10
76	Biomechanical alterations of dendritic cells by co-culturing with K562 CML cells and their potential role in immune escape. Journal of Biomechanics, 2010, 43, 2339-2347.	0.9	9
77	Gender Differences of NLRP1 Inflammasome in Mouse Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 512097.	1.7	9
78	Knockdown of hTERT Alters Biophysical Properties of K562 Cells Resulting in Decreased Migration Rate In Vitro. Cell Biochemistry and Biophysics, 2011, 61, 595-603.	0.9	8
79	Prevention of export of anoxia/reoxygenation injury from ischemic to nonischemic cardiomyocytes via inhibition of endocytosis. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1700-H1707.	1.5	8
80	Overexpression of CyclinA2 ameliorates hypoxia-impaired proliferation of cardiomyocytes. Experimental and Therapeutic Medicine, 2014, 8, 1513-1517.	0.8	8
81	LOX-1 – dependent mitochondrial DNA damage and NLRP3 activation during systemic inflammation in mice. Biochemical and Biophysical Research Communications, 2014, 451, 637-643.	1.0	7
82	Aspirin Downregulates Angiotensin Type 1 Receptor Transcription Implications in Capillary Formation From Endothelial Cells. Journal of Cardiovascular Pharmacology, 2012, 60, 187-192.	0.8	6
83	Effects of cardiotonic pill on RBC rheologic abnormalities in HFD-induced mice and LPL deficient mice. Clinical Hemorheology and Microcirculation, 2008, 40, 281-288.	0.9	5
84	Oxidized lowâ€density lipoprotein (oxâ€ <scp>LDL</scp>) promotes cardiac differentiation of bone marrow mesenchymal stem cells via activating <scp>ERK</scp> 1/2 signaling. Cardiovascular Therapeutics, 2017, 35, e12305.	1.1	5
85	Neuroprotective effect of tormentic acid against memory impairment and neuro‑inflammation in an Alzheimer's disease mouse model. Molecular Medicine Reports, 2020, 22, 739-750.	1.1	5
86	LOX-1 Deletion Attenuates Myocardial Fibrosis in the Aged Mice, Particularly Those With Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 736215.	1.1	5
87	Neuregulin-1 regulates the conversion of M1/M2 microglia phenotype via ErbB4-dependent inhibition of the NF-κB pathway. Molecular Biology Reports, 2022, 49, 3975-3986.	1.0	5
88	Effects of myakuryu on hemorheological characteristics and mesenteric microcirculation of rats fed with a high-fat diet. Biorheology, 2008, 45, 587-598.	1.2	4
89	Hemorheological changes in cerebral circulation of rabbits with acute carbon monoxide poisoning. Clinical Hemorheology and Microcirculation, 2009, 43, 271-282.	0.9	4
90	Biorheological changes of dendritic cells at the different differentiation stages. Clinical Hemorheology and Microcirculation, 2010, 46, 265-273.	0.9	4

#	Article	IF	CITATIONS
91	Chemically modified konjac glucomannan with high colloid osmotic pressure: Physiological evaluation in a rabbit model as a plasma substitute. Glycobiology, 2010, 20, 950-958.	1.3	4
92	Involvement of tRNAs in replication of human mitochondrial DNA and modifying effects of telomerase. Mechanisms of Ageing and Development, 2017, 166, 55-63.	2.2	4
93	Proteomic basis of modulation of post ischemic fibrosis by MSC exosomes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R639-R654.	0.9	3
94	Ryanodine receptor 1 mediates Ca2+ transport and influences the biomechanical properties in RBCs. Journal of Biomechanics, 2009, 42, 2774-2779.	0.9	2
95	Nestin expression involves invasiveness of esophageal carcinoma and its downregulation enhances paclitaxel sensitivity to esophageal carcinoma cell apoptosis. Oncotarget, 2017, 8, 65056-65063.	0.8	2
96	Exogenous Wild-Type p53 Gene Improved Survival of Nude Mice Injected with Murine Erythroleukemia Cell Line Through Amelioration of Hemorheological Changes. Microcirculation, 2007, 14, 155-166.	1.0	1
97	NADPH oxidase promotes PCSK9 secretion in macrophages. Journal of Molecular and Cellular Cardiology, 2021, 153, 42-43.	0.9	1
98	Effects of Low Power Laser Irradiation on Human's Red Blood Cell. Zhongguo Jiguang/Chinese Journal of Lasers, 2008, 35, 957-960.	0.2	1
99	Microarray, MicroRNA, and Angiogenesis. , 2013, , 459-477.		0
100	Degradation of HSPGs Enhances LOX-1-mediated Autophagy. , 2015, , 209-218.		0
101	Functions of MicroRNAs in Angiogenesis. , 2017, , 133-155.		0
102	Atherosclerosis and Gender-Related Differences. , 2018, , 1-13.		0
103	Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.5	0
104	Success of a New Fiber Titanium Mesh in Adult Rabbit Tibial Fracture Repair and Reconstruction. Journal of Biomaterials and Tissue Engineering, 2018, 8, 515-520.	0.0	0