
Fleur C Garton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polygenic risk score analysis for amyotrophic lateral sclerosis leveraging cognitive performance, educational attainment and schizophrenia. European Journal of Human Genetics, 2022, 30, 532-539.	2.8	16
2	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	8.2	12
3	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	12.4	38
4	Cardiovascular disease, psychiatric diagnosis and sex differences in the multistep hypothesis of amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 421-429.	3.3	15
5	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
6	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
7	Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. Cell Reports, 2020, 33, 108323.	6.4	41
8	Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Communications, 2020, 2, fcaa154.	3.3	32
9	ALS in Danish Registries. Neurology: Genetics, 2020, 6, e398.	1.9	34
10	Mutations in heat shock protein beta-1 (HSPB1) are associated with a range of clinical phenotypes related to different patterns of motor neuron dysfunction: A case series. Journal of the Neurological Sciences, 2020, 413, 116809.	0.6	14
11	What do we know about the variability in survival of patients with amyotrophic lateral sclerosis?. Expert Review of Neurotherapeutics, 2020, 20, 921-941.	2.8	10
12	Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. Npj Genomic Medicine, 2020, 5, 10.	3.8	25
13	Progression and survival of patients with motor neuron disease relative to their fecal microbiota. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 549-562.	1.7	27
14	Estimating the Rate of Cell Type Degeneration from Epigenetic Sequencing of Cell-Free DNA. Lecture Notes in Computer Science, 2020, , 240-242.	1.3	0
15	Human cerebral evolution and the clinical syndrome of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 570-575.	1.9	11
16	The Effect of ACTN3 Gene Doping on Skeletal Muscle Performance. American Journal of Human Genetics, 2018, 102, 845-857.	6.2	17
17	No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics, 2018, 19, 13.	2.8	65
18	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	12.8	93

FLEUR C GARTON

#	Article	IF	CITATIONS
19	Whole exome sequencing and <scp>DNA</scp> methylation analysis in a clinical amyotrophic lateral sclerosis cohort. Molecular Genetics & amp; Genomic Medicine, 2017, 5, 418-428.	1.2	14
20	Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature Communications, 2017, 8, 16015.	12.8	149
21	Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. Genome Medicine, 2017, 9, 97.	8.2	23
22	No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS ONE, 2016, 11, e0147330.	2.5	96
23	The Effect of Heterozygosity for the ACTN3 Null Allele on Human Muscle Performance. Medicine and Science in Sports and Exercise, 2016, 48, 509-520.	0.4	14
24	ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics, 2016, 17, 285.	2.8	106
25	Rodent models for resolving extremes of exercise and health. Physiological Genomics, 2016, 48, 82-92.	2.3	20
26	Athlome Project Consortium: a concerted effort to discover genomic and other "omic―markers of athletic performance. Physiological Genomics, 2016, 48, 183-190.	2.3	96
27	Analysis of the <i>ACTN3</i> heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Human Molecular Genetics, 2016, 25, 866-877.	2.9	35
28	Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. British Journal of Sports Medicine, 2015, 49, 1486-1491.	6.7	113
29	A gene for speed: The influence of ACTN3 on muscle performance in health and disease. Neuromuscular Disorders, 2015, 25, S185.	0.6	0
30	NF1 is a critical regulator of muscle development and metabolism. Human Molecular Genetics, 2014, 23, 1250-1259.	2.9	40
31	α-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Human Molecular Genetics, 2014, 23, 1879-1893.	2.9	26
32	Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Medicine, 2013, 43, 803-817.	6.5	158
33	ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. Journal of Clinical Investigation, 2013, 123, 4255-4263.	8.2	113
34	RARE MYOPATHIES AND EXPERIMENTAL APPROACHES - POSTER PRESENTATIONS G.P.125 ACTN3 genotype influences skeletal muscle performance through alterations in calcineurin signaling. Neuromuscular Disorders, 2012, 22, 904.	0.6	0
35	Loss of IL-15 receptor α alters the endurance, fatigability, and metabolic characteristics of mouse fast skeletal muscles. Journal of Clinical Investigation, 2011, 121, 3120-3132.	8.2	72
36	Deficiency of α-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Human Molecular Genetics, 2011, 20, 2914-2927.	2.9	95

FLEUR C GARTON

#	Article	IF	CITATIONS
37	Validation of an automated computational method for skeletal muscle fibre morphometry analysis. Neuromuscular Disorders, 2010, 20, 540-547.	0.6	25
38	α-Actinin-3 and Performance. Medicine and Sport Science, 2009, 54, 88-101.	1.4	65
39	Functional Characterisation of a GWAS Risk Locus Identifies <i>GPX3</i> as a Lead Candidate Gene in ALS. SSRN Electronic Journal, 0, , .	0.4	0