
Maria Victoria Puig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3109002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atypical, but not typical, antipsychotic drugs reduce hypersynchronized prefrontal-hippocampal circuits during psychosis-like states in mice: contribution of 5-HT2A and 5-HT1A receptors. Cerebral Cortex, 2022, 32, 3472-3487.	2.9	7
2	Prefrontal–hippocampal functional connectivity encodes recognition memory and is impaired in intellectual disability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11788-11798.	7.1	45
3	Methylphenidate Attenuates the Cognitive and Mood Alterations Observed in <i>Mbnl2</i> Knockout Mice and Reduces Microglia Overexpression. Cerebral Cortex, 2019, 29, 2978-2997.	2.9	20
4	Serotonin 5-HT1A, 5-HT2A and dopamine D2 receptors strongly influence prefronto-hippocampal neural networks in alert mice: Contribution to the actions of risperidone. Neuropharmacology, 2019, 158, 107743.	4.1	23
5	Editorial: Neuromodulation of executive circuits. Frontiers in Neural Circuits, 2015, 9, 58.	2.8	8
6	Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease. ACS Chemical Neuroscience, 2015, 6, 1017-1025.	3.5	50
7	Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex. Cerebral Cortex, 2015, 25, 2980-2987.	2.9	71
8	Prefrontal dopamine in associative learning and memory. Neuroscience, 2014, 282, 217-229.	2.3	102
9	Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Frontiers in Neural Circuits, 2014, 8, 93.	2.8	123
10	Serotonin modulation of cortical neurons and networks. Frontiers in Integrative Neuroscience, 2013, 7, 25.	2.1	308
11	The Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning. Neuron, 2012, 74, 874-886.	8.1	120
12	Serotonin and Prefrontal Cortex Function: Neurons, Networks, and Circuits. Molecular Neurobiology, 2011, 44, 449-464.	4.0	309
13	Serotonin Modulates Fast-Spiking Interneuron and Synchronous Activity in the Rat Prefrontal Cortex through 5-HT _{1A} and 5-HT _{2A} Receptors. Journal of Neuroscience, 2010, 30, 2211-2222.	3.6	172
14	The Hallucinogen DOI Reduces Low-Frequency Oscillations in Rat Prefrontal Cortex: Reversal by Antipsychotic Drugs. Biological Psychiatry, 2008, 64, 392-400.	1.3	111
15	Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8428-8433.	7.1	90
16	In Vivo Excitation of GABA Interneurons in the Medial Prefrontal Cortex through 5-HT3 Receptors. Cerebral Cortex, 2004, 14, 1365-1375.	2.9	132
17	Co-expression and In Vivo Interaction of Serotonin1A and Serotonin2A Receptors in Pyramidal Neurons of Prefrontal Cortex. Cerebral Cortex, 2004, 14, 281-299.	2.9	316
18	Modulation of the Activity of Pyramidal Neurons in Rat Prefrontal Cortex by Raphe Stimulation In Vivo: Involvement of Serotonin and GABA. Cerebral Cortex, 2004, 15, 1-14.	2.9	201

#	Article	IF	CITATIONS
19	In Vivo Modulation of the Activity of Pyramidal Neurons in the Rat Medial Prefrontal Cortex by 5-HT2A Receptors: Relationship to Thalamocortical Afferents. Cerebral Cortex, 2003, 13, 870-882.	2.9	185
20	Control of the serotonergic system by the medial prefrontal cortex: Potential role in the etiology of PTSD and depressive disorders. Neurotoxicity Research, 2002, 4, 409-419.	2.7	37
21	Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABA _A , and Glutamate Receptors. Journal of Neuroscience, 2001, 21, 9917-9929.	3.6	461
22	Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. Journal of Neuroscience, 2001, 21, 9856-9866.	3.6	292