Ortwin Naujok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3108690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proinflammatory cytokines induce rapid, NO-independent apoptosis, expression of chemotactic mediators and interleukin-32 secretion in human pluripotent stem cell-derived beta cells. Diabetologia, 2022, 65, 829-843.	6.3	9
2	Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. International Journal of Molecular Sciences, 2021, 22, 3096.	4.1	11
3	New hPSC SOX9 and INS Reporter Cell Lines Facilitate the Observation and Optimization of Differentiation into Insulin-Producing Cells. Stem Cell Reviews and Reports, 2021, 17, 2193-2209.	3.8	4
4	FGF2 Inhibits Early Pancreatic Lineage Specification during Differentiation of Human Embryonic Stem Cells. Cells, 2020, 9, 1927.	4.1	8
5	Design and Derivation of Multiâ€Reporter Pluripotent Stem Cell Lines via CRISPR/Cas9nâ€Mediated Homologyâ€Directed Repair. Current Protocols in Stem Cell Biology, 2020, 54, e116.	3.0	3
6	Chemically defined and xenogeneic-free differentiation of human pluripotent stem cells into definitive endoderm in 3D culture. Scientific Reports, 2019, 9, 996.	3.3	16
7	Chemically-Defined, Xeno-Free, Scalable Production of hPSC-Derived Definitive Endoderm Aggregates with Multi-Lineage Differentiation Potential. Cells, 2019, 8, 1571.	4.1	19
8	Purification of Definitive Endoderm Generated from Pluripotent Stem Cells by Magnetic Cell Sorting. Current Protocols in Stem Cell Biology, 2017, 40, 1D.9.1-1D.9.17.	3.0	2
9	miRNome Profiling of Purified Endoderm and Mesoderm Differentiated from hESCs Reveals Functions of miR-483-3p and miR-1263 for Cell-Fate Decisions. Stem Cell Reports, 2017, 9, 1588-1603.	4.8	26
10	Anterior–Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt-, and BMP-Signaling. Stem Cells, 2016, 34, 2635-2647.	3.2	48
11	A Quick and Efficient Method for the Purification of Endoderm Cells Generated from Human Embryonic Stem Cells. Journal of Visualized Experiments, 2016, , .	0.3	3
12	Gene Transfer into Pluripotent Stem Cells via Lentiviral Transduction. Methods in Molecular Biology, 2015, 1341, 67-85.	0.9	5
13	Generation and Purification of Definitive Endoderm Cells Generated from Pluripotent Stem Cells. Methods in Molecular Biology, 2015, 1341, 157-172.	0.9	2
14	Embryonic stem cells of the non-human primate <i>Callithrix jacchus</i> can be differentiated into definitive endoderm by Activin-A but not IDE-1/2. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 473-479.	2.7	9
15	A Reliable and Efficient Protocol for Human Pluripotent Stem Cell Differentiation into the Definitive Endoderm Based on Dispersed Single Cells. Stem Cells and Development, 2015, 24, 190-204.	2.1	28
16	The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling. Stem Cell Reviews and Reports, 2014, 10, 480-493.	5.6	56
17	Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Research Notes, 2014, 7, 273.	1.4	92
18	MicroRNA Target Sites as Genetic Tools to Enhance Promoter-Reporter Specificity for the Purification of Pancreatic Progenitor Cells from Differentiated Embryonic Stem Cells. Stem Cell Reviews and Reports, 2013, 9, 555-568.	5.6	8

Ortwin Naujok

#	Article	IF	CITATIONS
19	Comment on Binhai Ren et al. (2013; 15: 28–41): longâ€term reversal of diabetes in nonâ€obese diabetic mice by liverâ€directed gene therapy. Journal of Gene Medicine, 2013, 15, 306-308.	2.8	1
20	Islet microarchitecture and glucose transporter expression of the pancreas of the marmoset monkey display similarities to the human. Islets, 2012, 4, 123-129.	1.8	11
21	A Critical Re-Evaluation of CD24-Positivity of Human Embryonic Stem Cells Differentiated into Pancreatic Progenitors. Stem Cell Reviews and Reports, 2012, 8, 779-791.	5.6	24
22	Reversal of Diabetes Through Gene Therapy of Diabetic Rats by Hepatic Insulin Expression via Lentiviral Transduction. Molecular Therapy, 2012, 20, 918-926.	8.2	52
23	Insulin-producing Surrogate β-cells From Embryonic Stem Cells: Are We There Yet?. Molecular Therapy, 2011, 19, 1759-1768.	8.2	45
24	Beta Cell Mass Regulation in the Rat Pancreas Through Glucocorticoids and Thyroid Hormones. Pancreas, 2010, 39, 1167-1172.	1.1	11
25	Selective Removal of Undifferentiated Embryonic Stem Cells from Differentiation Cultures Through HSV1 Thymidine Kinase and Ganciclovir Treatment. Stem Cell Reviews and Reports, 2010, 6, 450-461.	5.6	33
26	Changes in gene expression and morphology of mouse embryonic stem cells on differentiation into insulinâ€producing cells <i>in vitro</i> and <i>in vivo</i> . Diabetes/Metabolism Research and Reviews, 2009, 25, 464-476.	4.0	20
27	A New Experimental Protocol for Preferential Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells. Cell Transplantation, 2008, 17, 1231-1242.	2.5	17