
Giovanna Palermo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chirality in Light–Matter Interaction. Advanced Materials, 2023, 35, e2107325.	11.1	43
2	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	1.7	1
3	Photo-Aligned Nematic Liquid Crystals Enable the Modulation of Thermoplasmonic Heating. Applied Sciences (Switzerland), 2021, 11, 6272.	1.3	3
4	Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Applied Materials & Interfaces, 2021, 13, 43715-43725.	4.0	45
5	Tailoring of plasmonic functionalized metastructures to enhance local heating release. Nanophotonics, 2021, 10, 3907-3916.	2.9	18
6	Biomolecular Sensing in Hybrid Chiral/Hyperbolic Metastructures. , 2021, , 1-14.		0
7	A Luminescent, Water-Soluble Ir(III) Complex as a Potential Photosensitizer for Two-Photon Photodynamic Therapy. Applied Sciences (Switzerland), 2021, 11, 11596.	1.3	1
8	Optical properties of metasurfaces infiltrated with liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20390-20396.	3.3	66
9	Thermoplasmonic-biosensing demonstration based on the photothermal response of metallic nanoparticles. Journal of Applied Physics, 2020, 128, 164302.	1.1	1
10	Biomolecular Sensing at the Interface between Chiral Metasurfaces and Hyperbolic Metamaterials. ACS Applied Materials & Interfaces, 2020, 12, 30181-30188.	4.0	55
11	Compressed and canalized emission of quantum emitters in MIM nano-cavities. Quantum Studies: Mathematics and Foundations, 2020, 7, 355-361.	0.4	1
12	Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics, 2020, 10, 295-314.	2.9	48
13	Hyperbolic dispersion metamaterials and metasurfaces. EPJ Applied Metamaterials, 2020, 7, 11.	0.8	5
14	A comprehensive optical analysis of nanoscale structures: from thin films to asymmetric nanocavities. RSC Advances, 2019, 9, 21429-21437.	1.7	20
15	Opto-mechanical control of flexible plasmonic materials. Journal of Applied Physics, 2019, 125, .	1.1	24
16	Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates. Journal of Chemical Physics, 2019, 151, 244707.	1.2	14
17	Thue-Morse nanostructures for tunable light extraction in the visible region. Optics and Lasers in Engineering, 2018, 104, 291-299.	2.0	5
18	A command layer for anisotropic plasmonic photo-thermal effects in liquid crystal. Liquid Crystals, 2018, 45, 2214-2220.	0.9	23

GIOVANNA PALERMO

#	Article	IF	CITATIONS
19	Flexible thermo-plasmonics: an opto-mechanical control of the heat generated at the nanoscale. Nanoscale, 2018, 10, 16556-16561.	2.8	30
20	Tailoring Electromagnetic Hot Spots toward Visible Frequencies in Ultra-Narrow Gap Al/Al ₂ O ₃ Bowtie Nanoantennas. ACS Photonics, 2018, 5, 3399-3407.	3.2	20
21	Assessment of EtQxBox complexation in solution by steady-state and time-resolved fluorescence spectroscopy. RSC Advances, 2018, 8, 16314-16318.	1.7	3
22	Thermoplasmonic Effects in Gain-Assisted Nanoparticle Solutions. Journal of Physical Chemistry C, 2017, 121, 24185-24191.	1.5	14
23	Photo-thermal study of a layer of randomly distributed gold nanoparticles: from nano-localization to macro-scale effects. Journal Physics D: Applied Physics, 2017, 50, 435302.	1.3	23
24	Conformal Silk-Azobenzene Composite for Optically Switchable Diffractive Structures. ACS Applied Materials & Interfaces, 2017, 9, 30951-30957.	4.0	17
25	Thermo-plasmonic effects on E7 nematic liquid crystal. Molecular Crystals and Liquid Crystals, 2017, 649, 45-49.	0.4	6
26	Determination of NLC refractive index dispersion in wavelength and temperature for plasmonic applications. Molecular Crystals and Liquid Crystals, 2017, 649, 31-37.	0.4	4
27	Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic processes. Nanoscale, 2017, 9, 19279-19289.	2.8	33
28	Photo-Thermal Effects in 1D Gratings of Gold Nanoparticles. Crystals, 2017, 7, 14.	1.0	21
29	Control of the optically induced heating of gold nanoparticles. Photonics Letters of Poland, 2017, 9, 17.	0.2	0
30	Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals. Applied Physics Letters, 2016, 109, .	1.5	19
31	Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles. , 2016, , .		2
32	Templating gold nanorods with liquid crystalline DNA. Journal of Optics (United Kingdom), 2015, 17, 025001.	1.0	5
33	Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals. Physical Chemistry Chemical Physics, 2015, 17, 20281-20287.	1.3	46
34	Plasmonic Thermometer Based on Thermotropic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2015, 614, 93-99.	0.4	11
35	Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2015, 619, 35-41.	0.4	3
36	Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics. Nanospectroscopy, 2015, 1, .	0.7	8

#	ARTICLE	IF	CITATIONS
37	Developing novel liquid crystal technologies for display and photonic applications. Displays, 2015, 36, 21-29.	2.0	10
38	Liquid Crystals Order in Polymeric Microchannels. , 2015, , 1-14.		0
39	Electro and pressure tunable cholesteric liquid crystal devices based on ion-implanted flexible substrates. Journal of Materials Chemistry C, 2013, 1, 7798.	2.7	9