
Giovanna Palermo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/310837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical properties of metasurfaces infiltrated with liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20390-20396.	7.1	66
2	Biomolecular Sensing at the Interface between Chiral Metasurfaces and Hyperbolic Metamaterials. ACS Applied Materials & Interfaces, 2020, 12, 30181-30188.	8.0	55
3	Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics, 2020, 10, 295-314.	6.0	48
4	Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals. Physical Chemistry Chemical Physics, 2015, 17, 20281-20287.	2.8	46
5	Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Applied Materials & Interfaces, 2021, 13, 43715-43725.	8.0	45
6	Chirality in Light–Matter Interaction. Advanced Materials, 2023, 35, e2107325.	21.0	43
7	Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic processes. Nanoscale, 2017, 9, 19279-19289.	5.6	33
8	Flexible thermo-plasmonics: an opto-mechanical control of the heat generated at the nanoscale. Nanoscale, 2018, 10, 16556-16561.	5.6	30
9	Opto-mechanical control of flexible plasmonic materials. Journal of Applied Physics, 2019, 125, .	2.5	24
10	Photo-thermal study of a layer of randomly distributed gold nanoparticles: from nano-localization to macro-scale effects. Journal Physics D: Applied Physics, 2017, 50, 435302.	2.8	23
11	A command layer for anisotropic plasmonic photo-thermal effects in liquid crystal. Liquid Crystals, 2018, 45, 2214-2220.	2.2	23
12	Photo-Thermal Effects in 1D Gratings of Gold Nanoparticles. Crystals, 2017, 7, 14.	2.2	21
13	Tailoring Electromagnetic Hot Spots toward Visible Frequencies in Ultra-Narrow Gap Al/Al ₂ O ₃ Bowtie Nanoantennas. ACS Photonics, 2018, 5, 3399-3407.	6.6	20
14	A comprehensive optical analysis of nanoscale structures: from thin films to asymmetric nanocavities. RSC Advances, 2019, 9, 21429-21437.	3.6	20
15	Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals. Applied Physics Letters, 2016, 109, .	3.3	19
16	Tailoring of plasmonic functionalized metastructures to enhance local heating release. Nanophotonics, 2021, 10, 3907-3916.	6.0	18
17	Conformal Silk-Azobenzene Composite for Optically Switchable Diffractive Structures. ACS Applied Materials & Interfaces, 2017, 9, 30951-30957.	8.0	17
18	Thermoplasmonic Effects in Gain-Assisted Nanoparticle Solutions. Journal of Physical Chemistry C, 2017, 121, 24185-24191.	3.1	14

GIOVANNA PALERMO

#	Article	IF	CITATIONS
19	Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates. Journal of Chemical Physics, 2019, 151, 244707.	3.0	14
20	Plasmonic Thermometer Based on Thermotropic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2015, 614, 93-99.	0.9	11
21	Developing novel liquid crystal technologies for display and photonic applications. Displays, 2015, 36, 21-29.	3.7	10
22	Electro and pressure tunable cholesteric liquid crystal devices based on ion-implanted flexible substrates. Journal of Materials Chemistry C, 2013, 1, 7798.	5.5	9
23	Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics. Nanospectroscopy, 2015, 1, .	0.7	8
24	Thermo-plasmonic effects on E7 nematic liquid crystal. Molecular Crystals and Liquid Crystals, 2017, 649, 45-49.	0.9	6
25	Templating gold nanorods with liquid crystalline DNA. Journal of Optics (United Kingdom), 2015, 17, 025001.	2.2	5
26	Thue-Morse nanostructures for tunable light extraction in the visible region. Optics and Lasers in Engineering, 2018, 104, 291-299.	3.8	5
27	Hyperbolic dispersion metamaterials and metasurfaces. EPJ Applied Metamaterials, 2020, 7, 11.	1.5	5
28	Determination of NLC refractive index dispersion in wavelength and temperature for plasmonic applications. Molecular Crystals and Liquid Crystals, 2017, 649, 31-37.	0.9	4
29	Flexible Structures Based on a Short Pitch Cholesteric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2015, 619, 35-41.	0.9	3
30	Assessment of EtQxBox complexation in solution by steady-state and time-resolved fluorescence spectroscopy. RSC Advances, 2018, 8, 16314-16318.	3.6	3
31	Photo-Aligned Nematic Liquid Crystals Enable the Modulation of Thermoplasmonic Heating. Applied Sciences (Switzerland), 2021, 11, 6272.	2.5	3
32	Nematic liquid crystals used to control photo-thermal effects in gold nanoparticles. , 2016, , .		2
33	Thermoplasmonic-biosensing demonstration based on the photothermal response of metallic nanoparticles. Journal of Applied Physics, 2020, 128, 164302.	2.5	1
34	Compressed and canalized emission of quantum emitters in MIM nano-cavities. Quantum Studies: Mathematics and Foundations, 2020, 7, 355-361.	0.9	1
35	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	3.1	1
36	A Luminescent, Water-Soluble Ir(III) Complex as a Potential Photosensitizer for Two-Photon Photodynamic Therapy. Applied Sciences (Switzerland), 2021, 11, 11596.	2.5	1

#	Article	IF	CITATIONS
37	Biomolecular Sensing in Hybrid Chiral/Hyperbolic Metastructures. , 2021, , 1-14.		Ο
38	Liquid Crystals Order in Polymeric Microchannels. , 2015, , 1-14.		0
39	Control of the optically induced heating of gold nanoparticles. Photonics Letters of Poland, 2017, 9, 17.	0.4	0