Abderrahmane Beroual

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3108336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Temperature on Lightning Performance of Mineral Oil. Energies, 2022, 15, 1063.	1.6	5
2	AC Breakdown Voltage and Partial Discharge Activity in Synthetic Ester-Based Fullerene and Graphene Nanofluids. IEEE Access, 2022, 10, 5620-5634.	2.6	33
3	Triple Point Surface Discharge Photography in Atmospheric Gases Using Intensified High-Speed Camera System. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, , 1-1.	1.8	1
4	Effect of Conducting, Semi-Conducting and Insulating Nanoparticles on AC Breakdown Voltage and Partial Discharge Activity of Synthetic Ester: A Statistical Analysis. Nanomaterials, 2022, 12, 2105.	1.9	11
5	High Voltage Insulating Materials—Current State and Prospects. Energies, 2021, 14, 3799.	1.6	1
6	Effect of Nanoparticles' Mixtures on AC Breakdown Voltage of Mineral Oil. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28, 1216-1222.	1.8	7
7	Statistical Analysis of AC Dielectric Strength of Natural Ester-Based ZnO Nanofluids. Energies, 2021, 14, 99.	1.6	33
8	Modelling of dielectric strength in long air gaps: application to a complex geometry. Journal Physics D: Applied Physics, 2020, 53, 135502.	1.3	9
9	Influence of electronic scavenger additives on AC breakdown voltage of synthetic ester. IET Science, Measurement and Technology, 2020, 14, 684-687.	0.9	Ο
10	DC Breakdown Voltage of Synthetic Ester Liquid-Based Nanofluids. IEEE Access, 2020, 8, 125797-125805.	2.6	11
11	Lightning impulse breakdown voltage of synthetic and natural ester liquids-based Fe3O4, Al2O3 and SiO2 nanofluids. AEJ - Alexandria Engineering Journal, 2020, 59, 3709-3713.	3.4	18
12	Comparison of breakdown voltage of vegetable olive with mineral oil, natural and synthetic ester liquids under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 1691-1697.	1.8	17
13	DC breakdown voltage of natural ester oil-based Fe3O4, Al2O3, and SiO2 nanofluids. AEJ - Alexandria Engineering Journal, 2020, 59, 4611-4620.	3.4	21
14	A Review on Synthetic Ester Liquids for Transformer Applications. Energies, 2020, 13, 6429.	1.6	69
15	Statistical Investigation of Lightning Impulse Breakdown Voltage of Natural and Synthetic Ester Oils-Based Fe ₃ O ₄ , Al ₂ O ₃ and SiO ₂ Nanofluids. IEEE Access, 2020, 8, 112615-112623.	2.6	21
16	Surface Discharges and Flashover Modelling of Solid Insulators in Gases. Energies, 2020, 13, 591.	1.6	6
17	Characteristics of Creeping Discharges Along Epoxy Surface in Fluoronitrile/CO2 Gas Mixture Under Lightning Impulse. Lecture Notes in Electrical Engineering, 2020, , 231-241.	0.3	4
18	Influence of Conductive Nanoparticles on the Breakdown Voltage of Mineral Oil, Synthetic and Natural Ester Oil-based Nanofluids 2019		5

Natural Ester Oil-based Nanofluids. , 2019, , .

#	Article	IF	CITATIONS
19	Electrical Detection of Creeping Discharges over Insulator Surfaces in Atmospheric Gases under AC Voltage Application. Energies, 2019, 12, 2970.	1.6	12
20	Statistical Investigation of AC Dielectric Strength of Natural Ester Oil-Based Fe ₃ O ₄ , Al ₂ O ₃ , and SiO ₂ Nano-Fluids. IEEE Access, 2019, 7, 60594-60601.	2.6	38
21	AC dielectric strength of synthetic ester-based Fe <inf>3</inf> O <inf>4</inf> , Al <inf>2</inf> O <inf>3</inf> and SiO <inf>2</inf> nanofluids — conformity with normal and weibull distributions. IEEE Transactions on Dielectrics and Electrical Insulation. 2019. 26. 625-633.	1.8	69
22	Statistical investigation of AC breakdown voltage of natural ester with electronic scavenger additives. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 2012-2018.	1.8	14
23	Creeping discharges features propagating in air at atmospheric pressure on various materials under positive lightning impulse voltage – part 2: modelling and computation of discharges' parameters. IET Generation, Transmission and Distribution, 2018, 12, 1429-1437.	1.4	4
24	AC Dielectric Strength of Mineral Oil-Based Fe3O4 and Al2O3 Nanofluids. Energies, 2018, 11, 3505.	1.6	42
25	Comparative Study on the AC Breakdown Voltage of Transformer Mineral Oil with Transformer Oil-based Al <inf>2</inf> O <inf>3</inf> Nanofluids. , 2018, , .		3
26	Numerical Study of the Magnetic Field Effect on Ferromagnetic Fluid Flow and Heat Transfer in a Square Porous Cavity. Energies, 2018, 11, 3235.	1.6	6
27	Comparison of dielectric properties of olive oil, mineral oil, and other natural and synthetic ester liquids under AC and lightning impulse stresses. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 1822-1830.	1.8	49
28	The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil. Energies, 2018, 11, 2607.	1.6	7
29	Experimental Investigation of the Breakdown Voltage of CO2, N2, and SF6 Gases, and CO2–SF6 and N2–SF6 Mixtures under Different Voltage Waveforms. Energies, 2018, 11, 902.	1.6	22
30	Statistical analysis of AC and DC breakdown voltage of JMEO (Jatropha methyl ester oil), mineral oil and their mixtures. , 2017, , .		6
31	Comparative Study of Breakdown Voltage of Mineral, Synthetic and Natural Oils and Based Mineral Oil Mixtures under AC and DC Voltages. Energies, 2017, 10, 511.	1.6	67
32	Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation. Energies, 2017, 10, 1013.	1.6	61
33	Recent Advances in the Quest for a New Insulation Gas with a Low Impact on the Environment to Replace Sulfur Hexafluoride (SF6) Gas in High-Voltage Power Network Applications. Energies, 2017, 10, 1216.	1.6	160
34	Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers. Energies, 2016, 9, 367.	1.6	131
35	A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics. Energies, 2016, 9, 879.	1.6	64
36	Influence of thermal ageing and electrical discharges on uninhibited olive oil properties. IET Science, Measurement and Technology, 2016, 10, 711-718.	0.9	29

#	Article	IF	CITATIONS
37	Jatropha curcas methyl ester oil obtaining as vegetable insulating oil. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 2021-2028.	1.8	50
38	AC creeping discharges propagating over solid–gas interfaces. IET Science, Measurement and Technology, 2014, 8, 595-600.	0.9	16