
Yong-gang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3108300/publications.pdf

Version: 2024-02-01

YONG-CANC YU

#	Article	IF	CITATIONS
1	Study on interaction characteristics between multi gas jets and water during the underwater launching process. Experimental Thermal and Fluid Science, 2017, 83, 200-206.	2.7	19
2	Study on the effect of distance between the two nozzle holes on interaction of high pressure combustion-gas jets with liquid. Energy Conversion and Management, 2014, 85, 675-686.	9.2	17
3	Experimental Study of Transient Combustion Characteristics of AP/HTPB Base Bleed Propellant Under Rapid Pressure Drop. Combustion Science and Technology, 2015, 187, 445-457.	2.3	17
4	Coupling characteristics of combustion-gas flows generated by two energetic materials in base bleed unit under rapid depressurization. Applied Thermal Engineering, 2019, 148, 502-515.	6.0	15
5	Geometrical Structures and Electronic Properties of Copper-Doped Aluminum Clusters. Chinese Journal of Chemical Physics, 2012, 25, 169-176.	1.3	13
6	Effects of Charge Size on Slow Cook-Off Characteristics of AP/HTPB Composite Propellant in Base Bleed Unit. Propellants, Explosives, Pyrotechnics, 2018, 43, 404-412.	1.6	13
7	Numerical Simulation of Quenched Combustion Model for AP/HTPB Propellant under Transient Depressurization. Propellants, Explosives, Pyrotechnics, 2017, 42, 1085-1094.	1.6	12
8	Study on Unsteady Combustion Behaviors of AP/HTPB Baseâ€Bleed Propellants under Transient Depressurization Conditions. Propellants, Explosives, Pyrotechnics, 2014, 39, 511-517.	1.6	11
9	An improvement of the base bleed unit on base drag reduction and heat energy addition as well as mass addition. Applied Thermal Engineering, 2016, 109, 238-250.	6.0	11
10	Three-Dimensional Simulation of Base Bleed Unit with AP/HTPB Propellant in Fast Cook-off Conditions. Journal of Energetic Materials, 2017, 35, 265-275.	2.0	11
11	Expansion characteristics of multiple wall jets in cylindrical observation chamber. Applied Thermal Engineering, 2017, 113, 1396-1409.	6.0	11
12	The interaction between multiple high pressure combustion gas jets and water in a water-filled vessel. Applied Ocean Research, 2016, 61, 175-182.	4.1	10
13	Physical characteristics on high-pressure combustion and propelling process of bulk-loaded energetic liquid. Applied Thermal Engineering, 2016, 98, 1070-1079.	6.0	10
14	Study on electrical ignition and micro-explosion properties of HAN-based monopropellant droplet. Frontiers of Energy and Power Engineering in China, 2010, 4, 430-435.	0.4	9
15	Numerical and experimental analyses of the characteristics of burning jets of base bleed ignited in the atmospheric environment. Numerical Heat Transfer; Part A: Applications, 2017, 71, 1141-1158.	2.1	9
16	Study on Expansion Process and Interaction of High Speed Twin Combustion-Gas Jets in Liquid. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	2.2	8
17	Study on the influences of interaction behaviors between multiple combustion-gas jets on expansion characteristics of Taylor cavities. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 720-731.	3.4	8
18	Study on the gas-curtain generation characteristics by the multiple gas jets in a liquid-filled tube. Applied Ocean Research, 2017, 64, 249-257.	4.1	8

Yong-gang Yu

#	Article	IF	CITATIONS
19	Coupled combustion characteristics of the base-bleed propellant and the igniter under transient depressurization based on detailed chemical kinetics. Applied Thermal Engineering, 2019, 163, 114348.	6.0	8
20	Study on Expansion Characteristic of Twin Combustion Gas Jets in Five-Stage Cylindrical Stepped-wall Observation Chamber. Flow, Turbulence and Combustion, 2013, 91, 139-155.	2.6	7
21	Flow structure of conical distributed multiple gas jets injected into a water chamber. Journal of Mechanical Science and Technology, 2017, 31, 1683-1691.	1.5	7
22	Unsteady chemical kinetics behavior of AP/HTPB propellant with micro-scale model. Combustion Science and Technology, 2018, 190, 2164-2187.	2.3	7
23	Numerical investigation of a muzzle multiphase flow field using two underwater launch methods. Defence Technology, 2022, 18, 1454-1469.	4.2	7
24	Experiments on the Combustion Characteristics of Deterrent-Coated Propellants and Their Application in Traveling Charge Propulsion. Combustion Science and Technology, 2012, 184, 178-185.	2.3	6
25	Numerical analysis of the influence of water/air medium on the muzzle flow field characteristics of machine gun. AIP Advances, 2018, 8, .	1.3	6
26	Influence of boundary shape on interaction process of plasma jet and liquid media. International Journal of Applied Electromagnetics and Mechanics, 2010, 33, 541-548.	0.6	5
27	Experimental Study and Numerical Simulation of Propellant Ignition and Combustion for Cased Telescoped Ammunition in Chamber. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	2.2	5
28	Study on three-dimensional expansion characteristics of four wall combustion-gas jets in confined liquid space. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 341-355.	3.4	5
29	Numerical Models for Interactions of Ablating-Capillary Plasma With Air and Bulk-Loaded Liquid. IEEE Transactions on Plasma Science, 2018, 46, 3065-3074.	1.3	5
30	Measurement and Analysis of the Burning Rate of HAN-Based Liquid Propellants. Propellants, Explosives, Pyrotechnics, 2012, 37, 439-444.	1.6	4
31	Experimental Study and Numerical Simulation on Propagation Properties of a Plasma Jet in a Cylindrical Liquid Chamber. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	4
32	Enhancing the penetration stability of plasma jet in liquid by improving the chamber structure. Current Applied Physics, 2019, 19, 968-977.	2.4	4
33	Effect of injection pressure on the plasma-liquid interaction in a stepped-wall liquid chamber. International Journal of Heat and Mass Transfer, 2020, 149, 119156.	4.8	4
34	Plasma–Liquid Interface Manipulated by Chamber Structure: An Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2020, 12, 44238-44247.	8.0	4
35	Groove structure on the drainage characteristics of the gas curtain. Ocean Engineering, 2022, 243, 110280.	4.3	4
36	Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber. Journal of Hydrodynamics, 2013, 25, 763-771.	3.2	3

Yong-gang Yu

#	Article	IF	CITATIONS
37	Numerical Studies on Chemical Non-Equilibrium Flow of the Base-Bleed Unit Wake. Combustion Science and Technology, 2017, 189, 1416-1439.	2.3	3
38	Expansion characteristics of a plasma jet in the stepped-wall liquid chamber. AIP Advances, 2018, 8, .	1.3	3
39	Study on Time-frequency Characteristics of Pressure Oscillations in a Bulk-loaded Liquid Gun. Propellants, Explosives, Pyrotechnics, 2018, 43, 1129-1138.	1.6	2
40	Experimental and numerical research on a novel underwater launching method with high efficiency and low resistance. AIP Advances, 2021, 11, 025212.	1.3	2
41	Experimental Study and Numerical Simulation on Interaction of Plasma Jet and Liquid media. , 2009, , .		1
42	Design of Periodicity Sequence Pulse Discharge Ignition Device and the Ignition Mechanism Study. , 2010, , .		1
43	Numerical Study on Wake Flow Field Characteristic of the Base-Bleed Unit under Fast Depressurization Process. Journal of Energetic Materials, 2017, 35, 213-232.	2.0	1
44	Effects of high-speed spin on the reacting flow of drag reduction equipment under rapid depressurization. Applied Thermal Engineering, 2022, 203, 117856.	6.0	1
45	Study on a new method for generating a gas curtain in the gas-curtain launching. AIP Advances, 2022, 12, 025101.	1.3	1
46	Analysis of the Propulsion Performance and Internal Flow Field of an Underwater Launcher. Applied Sciences (Switzerland), 2022, 12, 5443.	2.5	1
47	A study on interaction of high pressure gas jet and liquid medium. , 2011, , .		0
48	Softening of C—H Symmetric Stretching Vibrational Modes for CH2 and CH3 Radicals Adsorbed on Cu <i>n</i> (<i>n</i> =1–6) Clusters. Chinese Journal of Chemical Physics, 2012, 25, 649-653.	1.3	0
49	Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant. Journal of Energetic Materials, 2017, 35, 346-362.	2.0	0
50	Unsteady flow of igniter combustion-gas heating base bleed propellant by convection. AIP Advances, 2021, 11, 085208.	1.3	0
51	Measurement and Calculation of the Expansion Parameters of Pulsed Plasma Jet in Air. , 2017, , .		0
52	Characteristics of the Reacting Flow for the Baseâ€Bleed Projectile under Dual Stress. Propellants, Explosives, Pyrotechnics, 2021, 46, 1887-1901.	1.6	0