Dieter Franke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107848/publications.pdf Version: 2024-02-01

DIFTED FDANKE

#	Article	IF	CITATIONS
1	Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 2013, 43, 63-87.	1.5	416
2	Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 2014, 58, 599-611.	1.5	259
3	The final rifting evolution in the South China Sea. Marine and Petroleum Geology, 2014, 58, 704-720.	1.5	255
4	The continent-ocean transition at the southeastern margin of the South China Sea. Marine and Petroleum Geology, 2011, 28, 1187-1204.	1.5	164
5	Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology, 2007, 244, 46-67.	0.9	160
6	Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120, 1377-1399.	1.4	155
7	Different expressions of rifting on the South China Sea margins. Marine and Petroleum Geology, 2014, 58, 579-598.	1.5	143
8	Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea. Tectonophysics, 2013, 582, 162-176.	0.9	103
9	Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 2008, 25, 606-624.	1.5	97
10	The Laptev Sea Rift. Marine and Petroleum Geology, 2001, 18, 1083-1127.	1.5	91
11	Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam. Tectonophysics, 2013, 608, 72-83.	0.9	90
12	The deep-water fold-and-thrust belt offshore NW Borneo: Gravity-driven versus basement-driven shortening. Bulletin of the Geological Society of America, 2009, 121, 939-953.	1.6	78
13	The great Sumatra–Andaman earthquakes — Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth and Planetary Science Letters, 2008, 269, 118-130.	1.8	75
14	The offshore East African Rift System: Structural framework at the toe of a juvenile rift. Tectonics, 2015, 34, 2086-2104.	1.3	72
15	Birth of a volcanic margin off Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	67
16	Crustal structure across the Colorado Basin, offshore Argentina. Geophysical Journal International, 2006, 165, 850-864.	1.0	65
17	Crustal-scale architecture and segmentation of the Argentine margin and its conjugate off South Africa. Geophysical Journal International, 2009, 178, 85-105.	1.0	65
18	A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism. Earth-Science Reviews, 2020, 206, 102902.	4.0	64

#	Article	IF	CITATIONS
19	Oligocene–Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea. Marine and Petroleum Geology, 2014, 58, 644-657.	1.5	63
20	Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea. Earth-Science Reviews, 2020, 206, 102839.	4.0	63
21	Structural inheritance in the North Atlantic. Earth-Science Reviews, 2020, 206, 102975.	4.0	60
22	Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatraâ€Andaman earthquake: Results from seismic refraction and wideâ€angle reflection surveys and thermal modeling. Journal of Geophysical Research, 2010, 115, .	3.3	57
23	Time constraints on the evolution of southern Palawan Island, Philippines from onshore and offshore correlation of Miocene limestones. Journal of Asian Earth Sciences, 2013, 76, 412-427.	1.0	56
24	The structural evolution of folds in a deepwater fold and thrust belt – a case study from the Sabah continental margin offshore NW Borneo, SE Asia. Marine and Petroleum Geology, 2010, 27, 442-454.	1.5	53
25	Linking rift propagation barriers to excess magmatism at volcanic rifted margins. Geology, 2014, 42, 1071-1074.	2.0	53
26	Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Marine and Petroleum Geology, 2014, 50, 22-39.	1.5	52
27	The structure of the lower crust at the Argentine continental margin, South Atlantic at 44°S. Tectonophysics, 2008, 454, 14-22.	0.9	51
28	Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: Evidence from onshore structural and offshore seismic data. Marine and Petroleum Geology, 2014, 58, 658-673.	1.5	50
29	The continentâ€ocean transition on the northwestern <scp>S</scp> outh <scp>C</scp> hina <scp>S</scp> ea. Basin Research, 2017, 29, 73-95.	1.3	49
30	Geology of the East Siberian Sea, Russian Arctic, from seismic images: Structures, evolution, and implications for the evolution of the Arctic Ocean Basin. Journal of Geophysical Research, 2004, 109, .	3.3	47
31	South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion. Petroleum Geoscience, 2019, 25, 112-128.	0.9	46
32	Structural evolution and strike-slip tectonics off north-western Sumatra. Tectonophysics, 2010, 480, 119-132.	0.9	44
33	INDICATIONS FOR AN ACTIVE PETROLEUM SYSTEM IN THE LAPTEV SEA, NE SIBERIA. Journal of Petroleum Geology, 2005, 28, 369-384.	0.9	43
34	Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magmaâ€poor Rifting from a Wideâ€angle Seismic Profile. Acta Geologica Sinica, 2012, 86, 854-866.	0.8	43
35	The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge. Earth-Science Reviews, 2020, 206, 102926.	4.0	42
36	Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup. Solid Earth, 2014, 5, 1011-1026.	1.2	38

#	Article	IF	CITATIONS
37	The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique. Tectonophysics, 2014, 614, 91-99.	0.9	37
38	Deep seismic reflection images of the Wharton Basin oceanic crust and uppermost mantle offshore Northern Sumatra: Relation with active and past deformation. Journal of Geophysical Research: Solid Earth, 2014, 119, 32-51.	1.4	36
39	How to identify oceanic crust—Evidence for a complex break-up in the Mozambique Channel, off East Africa. Tectonophysics, 2016, 693, 436-452.	0.9	33
40	The crustal structure of the southern Argentine margin. Geophysical Journal International, 2012, 189, 1483-1504.	1.0	31
41	Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis. Tectonophysics, 2013, 604, 245-263.	0.9	31
42	Seismostratigraphy of the Siberian Sector of the Arctic Ocean and adjacent Laptev Sea Shelf. Journal of Geophysical Research: Solid Earth, 2014, 119, 5275-5289.	1.4	30
43	Gondwana breakup: no evidence for a Davie Fracture Zone offshore northern Mozambique, Tanzania and Kenya. Terra Nova, 2016, 28, 233-244.	0.9	29
44	Tectonics of the Laptev Sea – Moma `Rift' Region: Investigation with Seismologic Broadband Data. Journal of Seismology, 2000, 4, 99-116.	0.6	28
45	Variations in sediment transport at the central Argentine continental margin during the Cenozoic. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	28
46	On the climate benefit of a coal-to-gas shift in Germany's electric power sector. Scientific Reports, 2021, 11, 11453.	1.6	28
47	The late rifting phase and continental break-up of the southern South Atlantic: the mode and timing of volcanic rifting and formation of earliest oceanic crust. Geological Society Special Publication, 2016, 420, 315-340.	0.8	26
48	THE STRUCTURAL STYLE OF SEDIMENTARY BASINS ON THE SHELVES OF THE LAPTEV SEA AND WESTERN EAST SIBERIAN SEA, SIBERIAN ARCTIC. Journal of Petroleum Geology, 2005, 28, 269-286.	0.9	25
49	Neogene subsidence and stratigraphy of the Simeulue forearc basin, Northwest Sumatra. Marine Geology, 2008, 253, 1-13.	0.9	25
50	Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): New results and insights. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2014, 93, 147-174.	0.6	24
51	Tie points for Gondwana reconstructions from a structural interpretation of the Mozambique Basin, East Africa and the Riiser-Larsen Sea, Antarctica. Solid Earth, 2018, 9, 25-37.	1.2	24
52	Geological evolution of the West Luzon Basin (South China Sea, Philippines). Marine Geophysical Researches, 2011, 32, 349-362.	0.5	23
53	Variations in bottom water activity at the southern Argentine margin: indications from a seismic analysis of a continental slope terrace. Geo-Marine Letters, 2011, 31, 405-417.	0.5	23
54	Evidence for mantle exhumation since the early evolution of the slow-spreading Gakkel Ridge, Arctic Ocean. Journal of Geodynamics, 2018, 118, 154-165.	0.7	23

#	Article	IF	CITATIONS
55	Shallow gas accumulations in the German North Sea. Marine and Petroleum Geology, 2018, 91, 139-151.	1.5	22
56	The Paleozoic Evolution of the Olga Basin Region, Northern Barents Sea: A Link to the Timanian Orogeny. Geochemistry, Geophysics, Geosystems, 2019, 20, 614-629.	1.0	22
57	MATURITY AND PETROLEUM SYSTEMS MODELLING IN THE OFFSHORE ZAMBEZI DELTA DEPRESSION AND ANGOCHE BASIN, NORTHERN MOZAMBIQUE. Journal of Petroleum Geology, 2014, 37, 329-348.	0.9	21
58	The West Andaman Fault: A complex strainâ€partitioning boundary at the seaward edge of the Aceh Basin, offshore Sumatra. Tectonics, 2014, 33, 786-806.	1.3	21
59	Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea. International Journal of Earth Sciences, 2016, 105, 797-818.	0.9	19
60	Initial Opening of the Eurasian Basin, Arctic Ocean. Frontiers in Earth Science, 2016, 4, .	0.8	18
61	The crustal structure of the southern Davie Ridge offshore northern Mozambique – A wide-angle seismic and potential field study. Tectonophysics, 2020, 778, 228370.	0.9	18
62	Polyphase Magmatism During the Formation of the Northern East Greenland Continental Margin. Tectonics, 2019, 38, 2961-2982.	1.3	17
63	Subduction system variability across the segment boundary of the 2004/2005 Sumatra megathrust earthquakes. Earth and Planetary Science Letters, 2013, 365, 108-119.	1.8	16
64	Reply to Chang etÂal., 2014, Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 2015, 59, 679-681.	1.5	16
65	Faultâ€controlled lithospheric detachment of the volcanic southern <scp>S</scp> outh <scp>A</scp> tlantic rift. Geochemistry, Geophysics, Geosystems, 2016, 17, 887-894.	1.0	16
66	Geology of the Shelves surrounding the New Siberian Islands, Russian Arctic. Stephan Mueller Special Publication Series, 0, 4, 35-44.	0.0	16
67	Structure and evolution of the Atlantic passive margins: A review of existing rifting models from wide-angle seismic data and kinematic reconstruction. Marine and Petroleum Geology, 2021, 126, 104898.	1.5	15
68	Evolution of the northern Argentine margin during the Cenozoic controlled by bottom current dynamics and gravitational processes. Geochemistry, Geophysics, Geosystems, 2016, 17, 3131-3149.	1.0	14
69	Detailed Seismic Bathymetry Beneath Ekström Ice Shelf, Antarctica: Implications for Glacial History and Iceâ€Ocean Interaction. Geophysical Research Letters, 2020, 47, e2019GL086187.	1.5	14
70	Basin and petroleum systems modelling in the northern Norwegian Barents Sea. Marine and Petroleum Geology, 2021, 130, 105128.	1.5	13
71	Numerical modeling of extensional sedimentary basin formation with MATLAB: Application to the northern margin of the South China Sea. Computers and Geosciences, 2013, 51, 153-165.	2.0	12
72	Organic matter type, origin and thermal maturity of Paleozoic, Mesozoic and Cenozoic successions of the New Siberian Islands, eastern Russian Arctic. International Journal of Coal Geology, 2015, 152, 125-146.	1.9	12

#	Article	IF	CITATIONS
73	Shale-Gas Assessment: Comparison of Gas-In-Place Versus Performance-Based Approaches. Natural Resources Research, 2016, 25, 315-329.	2.2	12
74	Petroleum systems of the Simeulue fore-arc basin, offshore Sumatra, Indonesia. AAPG Bulletin, 2011, 95, 1589-1616.	0.7	11
75	Deepwater folding and thrusting offshore NW Borneo, SE Asia. Geological Society Special Publication, 2010, 348, 169-185.	0.8	10
76	The Mesozoic–Cenozoic tectonic evolution of the New Siberian Islands, NE Russia. Geological Magazine, 2015, 152, 480-491.	0.9	10
77	The Southwest Indian Ocean Bathymetric Compilation (swIOBC). Geochemistry, Geophysics, Geosystems, 2018, 19, 968-976.	1.0	10
78	Slowdown of Circumpolar Deepwater flow during the Late Neogene: Evidence from a mudwave field at the Argentine continental slope. Geophysical Research Letters, 2014, 41, 2070-2076.	1.5	9
79	Maturity modelling of the deepwater continental margin, offshore Argentina. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2011, 162, 79-89.	0.1	8
80	Mesozoic structural evolution of the New Siberian Islands. Geological Society Special Publication, 2018, 460, 239-262.	0.8	8
81	Rapid Quaternary subsidence in the northwestern German North Sea. Scientific Reports, 2018, 8, 11524.	1.6	7
82	How to Include Ignorance into Hydrocarbon-Resource Assessments? A Case Study Applied to the Presence of Source Rock at the Argentine Deep Water Margin. Natural Resources Research, 2012, 21, 301-309.	2.2	5
83	Dating and correlation of reference seismic horizons in the Laptev Sea Basin. Moscow University Geology Bulletin, 2014, 69, 271-280.	0.0	5
84	Unlocking the Opening Processes of the South China Sea. Scientific Drilling, 0, 14, 55-59.	1.0	5
85	Reconnaissance study of organic geochemistry and petrology of Paleozoic-Cenozoic potential hydrocarbon source rocks from the New Siberian Islands, Arctic Russia. Marine and Petroleum Geology, 2016, 78, 30-47.	1.5	4
86	Deformation of Continental Lithosphere on the Laptev Sea Shelf, Russian Arctic. , 1998, , .		4
87	Geology of the shelves surrounding the New Siberian Islands from seismic images. , 2012, , 278-297.		3
88	The magma-poor Somalian continental margin: Lower crustal boudinage and mantle exhumation. Marine Geology, 2020, 430, 106358.	0.9	2
89	"SOME THOUGHTS ON THE INFLUENCE OF PRESSURE AND THERMAL HISTORY ASSUMPTIONS ON PETROLEL SYSTEMS MODELLINGâ€, by A. D. Carr and C. N. Uguna. Journal of Petroleum Geology, 2015, 38, 467-470.	IM 0.9	0
90	Inheritance and style of rifting: incremental structural restoration of the Laptev Sea Rift System, north-eastern Russian Arctic. Arktos, 2019, 5, 63-70.	1.0	0

#	Article	IF	CITATIONS
91	Energy Resources. , 2014, , 1-14.		0
92	Energy Resources. Encyclopedia of Earth Sciences Series, 2016, , 217-226.	0.1	0
93	Numerical basin modeling of the Laptev Sea Rift, NE Russia. , 2019, , 45-61.		0
94	Ehrungen der Deutschen Geologischen Gesellschaft ‒ Geologischen Vereinigung (DGGV) 2020. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2020, 171, 237-247.	0.1	0