Xiuju Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear IL-33 Plays an Important Role in IL-31‒Mediated Downregulation of FLG, Keratin 1, and Keratin 10 by Regulating Signal Transducer and Activator of Transcription 3 Activation in Human Keratinocytes. Journal of Investigative Dermatology, 2022, 142, 136-144.e3.	0.7	13
2	TSLP Impairs Epidermal Barrier Integrity by Stimulating the Formation of Nuclear IL-33/Phosphorylated STAT3 Complex in Human Keratinocytes. Journal of Investigative Dermatology, 2022, 142, 2100-2108.e5.	0.7	18
3	ECFR ligands synergistically increase ILâ€17Aâ€induced expression of psoriasis signature genes in human keratinocytes via ll̂ºBζ and Bcl3. European Journal of Immunology, 2022, 52, 994-1005.	2.9	7
4	Nuclear IL-33 Plays an Important Role in the Suppression of FLG, LOR, Keratin 1, and Keratin 10 by IL-4 and IL-13 in Human Keratinocytes. Journal of Investigative Dermatology, 2021, 141, 2646-2655.e6.	0.7	22
5	House dust mite allergens induce interleukin 33 (IL-33) synthesis and release from keratinocytes via ATP-mediated extracellular signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165719.	3.8	32
6	Bclâ€3 induced by ILâ€22 via STAT3 activation acts as a potentiator of psoriasisâ€related gene expression in epidermal keratinocytes. European Journal of Immunology, 2018, 48, 168-179.	2.9	31
7	Heparinoid suppresses Der pâ€induced <scp>IL</scp> â€1β production by inhibiting <scp>ERK</scp> and p38 <scp>MAPK</scp> pathways in keratinocytes. Experimental Dermatology, 2018, 27, 981-988.	2.9	7
8	Epidermal keratinocytes sense ds <scp>RNA</scp> via the <scp>NLRP</scp> 3 inflammasome, mediating interleukin (<scp>IL</scp>)â€1β and <scp>IL</scp> â€18 release. Experimental Dermatology, 2017, 26, 904-911.	2.9	36
9	Vesicular LL-37 Contributes to Inflammation of the Lesional Skin of Palmoplantar Pustulosis. PLoS ONE, 2014, 9, e110677.	2.5	34
10	Eccrine Sweat Contains IL-1α, IL-1β and IL-31 and Activates Epidermal Keratinocytes as a Danger Signal. PLoS ONE, 2013, 8, e67666.	2.5	73
11	IFN-α Enhances IL-22 Receptor Expression in Keratinocytes: A Possible Role in the Development of Psoriasis. Journal of Investigative Dermatology, 2012, 132, 1933-1935.	0.7	52
12	Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. Journal of Allergy and Clinical Immunology, 2011, 127, 806-814.e4.	2.9	142
13	PPARÎ ³ mediates innate immunity by regulating the 1α,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. Journal of Dermatological Science, 2010, 60, 179-186.	1.9	37
14	PPARÎ ³ is an important transcription factor in 1α,25-dihydroxyvitamin D3-induced involucrin expression. Journal of Dermatological Science, 2008, 50, 53-60.	1.9	18
15	The NF-ÂB, p38 MAPK and STAT1 pathways differentially regulate the dsRNA-mediated innate immune responses of epidermal keratinocytes. International Immunology, 2008, 20, 901-909.	4.0	23
16	STAT5a/PPARÎ ³ Pathway Regulates Involucrin Expression in Keratinocyte Differentiation. Journal of Investigative Dermatology, 2007, 127, 1728-1735.	0.7	17
17	SOCS1-Negative Feedback of STAT1 Activation Is a Key Pathway in the dsRNA-Induced Innate Immune Response of Human Keratinocytes. Journal of Investigative Dermatology, 2006, 126, 1574-1581.	0.7	68
18	New skin-equivalent model from de-epithelialized amnion membrane. Cell and Tissue Research, 2006, 326, 69-77.	2.9	65

Χιυјυ Φαι

#	Article	IF	CITATIONS
19	New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of β-defensins, LL37, and TLR2. European Journal of Immunology, 2005, 35, 1886-1895.	2.9	66
20	Induction of Keratinocyte Migration via Transactivation of the Epidermal Growth Factor Receptor by the Antimicrobial Peptide LL-37. Journal of Immunology, 2005, 175, 4662-4668.	0.8	315
21	dsRNA-mediated innate immunity of epidermal keratinocytes. Biochemical and Biophysical Research Communications, 2005, 335, 505-511.	2.1	39
22	Microbubble-enhanced ultrasound for gene transfer into living skin equivalents. Journal of Dermatological Science, 2005, 40, 105-114.	1.9	37
23	All-Trans-Retinoic Acid Induces Interleukin-8 via the Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Pathways in Normal Human Keratinocytes. Journal of Investigative Dermatology, 2004, 123, 1078-1085.	0.7	45