


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107526/publications.pdf Version: 2024-02-01



VINCLI

| #  | Article                                                                                                                                                                                                                                  | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale, 2015, 7, 16631-16646.                                                                                              | 2.8 | 268       |
| 2  | Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials, 2014, 35, 8467-8478.                                                                          | 5.7 | 176       |
| 3  | Challenges in Multiscale Modeling of Polymer Dynamics. Polymers, 2013, 5, 751-832.                                                                                                                                                       | 2.0 | 173       |
| 4  | Nanoparticle Effect on the Dynamics of Polymer Chains and Their Entanglement Network. Physical<br>Review Letters, 2012, 109, 118001.                                                                                                     | 2.9 | 160       |
| 5  | Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.<br>ACS Nano, 2019, 13, 215-228.                                                                                                         | 7.3 | 125       |
| 6  | A predictive multiscale computational framework for viscoelastic properties of linear polymers.<br>Polymer, 2012, 53, 5935-5952.                                                                                                         | 1.8 | 115       |
| 7  | Additive manufacturing of self-healing elastomers. NPG Asia Materials, 2019, 11, .                                                                                                                                                       | 3.8 | 111       |
| 8  | Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting.<br>Applied Physics Letters, 2017, 111, .                                                                                                  | 1.5 | 105       |
| 9  | Nanoparticle Geometrical Effect on Structure, Dynamics and Anisotropic Viscosity of Polyethylene<br>Nanocomposites. Macromolecules, 2012, 45, 2099-2112.                                                                                 | 2.2 | 99        |
| 10 | A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon, 2012, 50, 1793-1806.                                                             | 5.4 | 97        |
| 11 | Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and<br>Challenges. Polymers, 2020, 12, 163.                                                                                                    | 2.0 | 95        |
| 12 | Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers.<br>Journal of the Mechanics and Physics of Solids, 2016, 88, 204-226.                                                                  | 2.3 | 87        |
| 13 | Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers, 2016, 8, 83.                                                                                                                         | 2.0 | 81        |
| 14 | Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus, 2016, 6, 20150086.                                                                      | 1.5 | 79        |
| 15 | Manipulating nanoparticle transport within blood flow through external forces: an exemplar of<br>mechanics in nanomedicine. Proceedings of the Royal Society A: Mathematical, Physical and<br>Engineering Sciences, 2018, 474, 20170845. | 1.0 | 79        |
| 16 | Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein. Composites Science and Technology, 2008, 68, 186-192.                                                                                                | 3.8 | 78        |
| 17 | Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles.<br>Soft Matter, 2014, 10, 1723.                                                                                                         | 1.2 | 73        |
| 18 | Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated<br>liposomes. Nanoscale, 2018, 10, 4545-4560.                                                                                          | 2.8 | 60        |

| #  | Article                                                                                                                                                                                                             | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Primitive chain network study on uncrosslinked and crosslinked cis-polyisoprene polymers. Polymer, 2011, 52, 5867-5878.                                                                                             | 1.8 | 59        |
| 20 | Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature. Journal of Chemical Information and Modeling, 2021, 61, 5395-5413.                                        | 2.5 | 59        |
| 21 | Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery.<br>Computational Mechanics, 2014, 53, 511-537.                                                                      | 2.2 | 52        |
| 22 | Machine learning discovery of high-temperature polymers. Patterns, 2021, 2, 100225.                                                                                                                                 | 3.1 | 51        |
| 23 | Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Physical Chemistry Chemical Physics, 2018, 20, 16372-16385.                               | 1.3 | 48        |
| 24 | Viscoelasticity of carbon nanotube buckypaper: zipping–unzipping mechanism and entanglement<br>effects. Soft Matter, 2012, 8, 7822.                                                                                 | 1.2 | 44        |
| 25 | Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors. Nanotechnology, 2008,<br>19, 165502.                                                                                                 | 1.3 | 43        |
| 26 | MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Computer<br>Methods in Applied Mechanics and Engineering, 2019, 357, 112587.                                             | 3.4 | 42        |
| 27 | Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Frontiers in Materials, 2020, 7, .                                                                                                       | 1.2 | 40        |
| 28 | Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain<br>mean-field models. New Journal of Physics, 2014, 16, 015027.                                                  | 1.2 | 37        |
| 29 | Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model.<br>Polymers, 2021, 13, 1898.                                                                                             | 2.0 | 37        |
| 30 | Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress,<br>Opportunities, and Challenges. ACS Omega, 2021, 6, 1758-1772.                                                            | 1.6 | 37        |
| 31 | Computational modeling of magnetic particle margination within blood flow through LAMMPS.<br>Computational Mechanics, 2018, 62, 457-476.                                                                            | 2.2 | 36        |
| 32 | Stretching-dominated deformation mechanism in a super square carbon nanotube network. Carbon, 2009, 47, 812-819.                                                                                                    | 5.4 | 32        |
| 33 | Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics. Soft Matter, 2016, 12, 3202-3213.                                                                    | 1.2 | 30        |
| 34 | Tuning Chiral Nematic Pitch of Bioresourced Photonic Films via Coupling Organic Acid Hydrolysis.<br>Advanced Materials Interfaces, 2019, 6, 1802010.                                                                | 1.9 | 30        |
| 35 | Efficient separation of small organic contaminants in water using functionalized nanoporous<br>graphene membranes: Insights from molecular dynamics simulations. Journal of Membrane Science,<br>2021, 630, 119331. | 4.1 | 30        |
| 36 | Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale, 2016, 8, 14821-14835.                                                          | 2.8 | 29        |

| #  | Article                                                                                                                                                                                                               | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.<br>Nanotechnology, 2018, 29, 104001.                                                                                | 1.3 | 29        |
| 38 | The effective modulus of super carbon nanotubes predicted by molecular structure mechanics.<br>Nanotechnology, 2008, 19, 225701.                                                                                      | 1.3 | 28        |
| 39 | MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis. Computer<br>Methods in Applied Mechanics and Engineering, 2020, 364, 112955.                                                | 3.4 | 28        |
| 40 | Effect of nano inclusions on the structural and physical properties of polyethylene polymer matrix.<br>Polymer, 2011, 52, 2310-2318.                                                                                  | 1.8 | 27        |
| 41 | Magttice: a lattice model for hard-magnetic soft materials. Soft Matter, 2021, 17, 3560-3568.                                                                                                                         | 1.2 | 27        |
| 42 | The elastic buckling of super-graphene and super-square carbon nanotube networks. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2010, 374, 1773-1778.                                       | 0.9 | 25        |
| 43 | Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM.<br>Computational Mechanics, 2015, 55, 659-672.                                                                               | 2.2 | 25        |
| 44 | Environmental pollution of polybrominated diphenyl ethers from industrial plants in China: a preliminary investigation. Environmental Science and Pollution Research, 2016, 23, 7012-7021.                            | 2.7 | 24        |
| 45 | SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading. International Journal of Fracture, 2008, 151, 269-279.                                              | 1.1 | 23        |
| 46 | Self-assembled core–polyethylene glycol–lipid shell nanoparticles demonstrate high stability in shear<br>flow. Physical Chemistry Chemical Physics, 2017, 19, 13294-13306.                                            | 1.3 | 23        |
| 47 | Buckling behavior of metal film/substrate structure under pure bending. Applied Physics Letters, 2008,<br>92, 131902.                                                                                                 | 1.5 | 22        |
| 48 | Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study. Journal Physics<br>D: Applied Physics, 2010, 43, 495405.                                                                           | 1.3 | 22        |
| 49 | Computational study on entanglement length and pore size of carbon nanotube buckypaper. Applied<br>Physics Letters, 2012, 100, .                                                                                      | 1.5 | 22        |
| 50 | Surface Ripples of Polymeric Nanofibers under Tension: The Crucial Role of Poisson's Ratio.<br>Macromolecules, 2014, 47, 6503-6514.                                                                                   | 2.2 | 22        |
| 51 | Transparency Change Mechanochromism Based on a Robust PDMSâ€Hydrogel Bilayer Structure.<br>Macromolecular Rapid Communications, 2021, 42, e2000446.                                                                   | 2.0 | 21        |
| 52 | Molecular insights into the effect of graphene packing on mechanical behaviors of graphene<br>reinforced cis-1,4-polybutadiene polymer nanocomposites. Physical Chemistry Chemical Physics, 2017,<br>19, 22417-22433. | 1.3 | 20        |
| 53 | pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles. Nanoscale, 2019, 11, 7371-7385.                                                           | 2.8 | 20        |
| 54 | Interplay of deformability and adhesion on localization of elastic micro-particles in blood flow.<br>Journal of Fluid Mechanics, 2019, 861, 55-87.                                                                    | 1.4 | 20        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tailoring the dispersion of nanoparticles and the mechanical behavior of polymer nanocomposites by designing the chain architecture. Physical Chemistry Chemical Physics, 2017, 19, 32024-32037. | 1.3 | 19        |
| 56 | A comprehensive study on the mechanical properties of super carbon nanotubes. Journal Physics D:<br>Applied Physics, 2008, 41, 155423.                                                           | 1.3 | 18        |
| 57 | Effect of equal channel angular extrusion process on deformation behaviors of Mg-3Al-Zn alloy.<br>Materials Letters, 2008, 62, 1856-1858.                                                        | 1.3 | 17        |
| 58 | The specific heat of carbon nanotube networks and their potential applications. Journal Physics D:<br>Applied Physics, 2009, 42, 155405.                                                         | 1.3 | 17        |
| 59 | Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper. Polymers, 2017, 9, 115.                                                                                       | 2.0 | 17        |
| 60 | PEGylated "stealth―nanoparticles and liposomes. , 2018, , 1-26.                                                                                                                                  |     | 17        |
| 61 | A machine-learning-assisted study of the permeability of small drug-like molecules across lipid membranes. Physical Chemistry Chemical Physics, 2020, 22, 19687-19696.                           | 1.3 | 17        |
| 62 | Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials:<br>Physical Understandings and Molecular Design. Frontiers in Chemistry, 2021, 9, 820417.        | 1.8 | 17        |
| 63 | Effects of elastic anisotropy on the surface stability of thin film/substrate system. International<br>Journal of Engineering Science, 2008, 46, 1325-1333.                                      | 2.7 | 16        |
| 64 | The archetype-genome exemplar in molecular dynamics and continuum mechanics. Computational Mechanics, 2014, 53, 687-737.                                                                         | 2.2 | 16        |
| 65 | Effect of Cyclic Loading on Surface Instability of Silicone Rubber under Compression. Polymers, 2017,<br>9, 148.                                                                                 | 2.0 | 16        |
| 66 | Anomalous Vascular Dynamics of Nanoworms within Blood Flow. ACS Biomaterials Science and Engineering, 2018, 4, 66-77.                                                                            | 2.6 | 16        |
| 67 | Machine learning strategies for the structure-property relationship of copolymers. IScience, 2022, 25, 104585.                                                                                   | 1.9 | 16        |
| 68 | Transition of surface–interface creasing in bilayer hydrogels. Soft Matter, 2017, 13, 6011-6020.                                                                                                 | 1.2 | 15        |
| 69 | Cell Stiffness Governs Its Adhesion Dynamics on Substrate Under Shear Flow. IEEE Nanotechnology<br>Magazine, 2018, 17, 407-411.                                                                  | 1.1 | 15        |
| 70 | Improved Dreiding force field for single layer black phosphorus. Physical Chemistry Chemical Physics,<br>2019, 21, 16804-16817.                                                                  | 1.3 | 15        |
| 71 | Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic<br>Janus nanoparticles. Nanoscale, 2020, 12, 20326-20336.                                   | 2.8 | 15        |
| 72 | Dislocation structure and dynamics govern pop-in modes of nanoindentation on single-crystal metals. Philosophical Magazine, 2020, 100, 1585-1606.                                                | 0.7 | 15        |

| #  | Article                                                                                                                                                                                               | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Chirality independence in critical buckling forces of super carbon nanotubes. Solid State<br>Communications, 2008, 148, 63-68.                                                                        | 0.9 | 14        |
| 74 | The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids.<br>Soft Matter, 2015, 11, 7911-7919.                                                              | 1.2 | 14        |
| 75 | OpenFSI: A highly efficient and portable fluid–structure simulation package based on immersed-boundary method. Computer Physics Communications, 2020, 256, 107463.                                    | 3.0 | 14        |
| 76 | Molecular insights into the structure-property relationships of 3D printed polyamide reverse-osmosis membrane for desalination. Journal of Membrane Science, 2022, 658, 120731.                       | 4.1 | 14        |
| 77 | Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. Journal of Physical Chemistry B, 2020, 124, 5415-5425.                                                     | 1.2 | 13        |
| 78 | Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. Soft Matter, 2021, 17, 40-56.                                        | 1.2 | 12        |
| 79 | Sticky Rouse Time Features the Self-Adhesion of Supramolecular Polymer Networks. Macromolecules, 2021, 54, 5053-5064.                                                                                 | 2.2 | 12        |
| 80 | Specific heat of super carbon nanotube and its chirality independence. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 2008, 372, 6960-6964.                                  | 0.9 | 11        |
| 81 | What causes the anomalous aggregation in pluronic aqueous solutions?. Soft Matter, 2018, 14, 7653-7663.                                                                                               | 1.2 | 11        |
| 82 | Design of Phononic Bandgap Metamaterials Based on Gaussian Mixture Beta Variational Autoencoder<br>and Iterative Model Updating. Journal of Mechanical Design, Transactions of the ASME, 2022, 144, . | 1.7 | 11        |
| 83 | Tensile Stress-Driven Surface Wrinkles on Cylindrical Core–Shell Soft Solids. Journal of Applied<br>Mechanics, Transactions ASME, 2015, 82, .                                                         | 1.1 | 10        |
| 84 | Deformation and pattern transformation of porous soft solids under biaxial loading: Experiments and simulations. Extreme Mechanics Letters, 2018, 20, 81-90.                                          | 2.0 | 10        |
| 85 | Super Stretchable and Compressible Hydrogels Inspired by Hook-and-Loop Fasteners. Langmuir, 2021, 37, 7760-7770.                                                                                      | 1.6 | 10        |
| 86 | Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Computational<br>Mechanics, 2017, 59, 187-201.                                                                        | 2.2 | 9         |
| 87 | Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated<br>liposomes and bicelles. Nanoscale, 2019, 11, 15971-15983.                                          | 2.8 | 9         |
| 88 | An estimation method on failure stress of micro thickness Cu film-substrate structure. Science in<br>China Series D: Earth Sciences, 2009, 52, 2210-2215.                                             | 0.9 | 8         |
| 89 | Effects of Membrane Defects and Polymer Hydrophobicity on Networking Kinetics of Vesicles.<br>Langmuir, 2017, 33, 5745-5751.                                                                          | 1.6 | 8         |
| 90 | Void nucleation in alloys with lamella particles under biaxial loadings. Extreme Mechanics Letters, 2018, 22, 42-50.                                                                                  | 2.0 | 8         |

| #   | Article                                                                                                                                                                                                | IF       | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 91  | Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. Soft Matter, 2018, 14, 7401-7419.                                                     | 1.2      | 8            |
| 92  | Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment. Nanoscale, 2019, 11, 20179-20193.                                         | 2.8      | 8            |
| 93  | Mechanical Resilience of Biofilms toward Environmental Perturbations Mediated by Extracellular<br>Matrix. Advanced Functional Materials, 2022, 32, .                                                   | 7.8      | 8            |
| 94  | Fractal geometry and topology abstracted from hair fibers. Applied Mathematics and Mechanics (English Edition), 2009, 30, 983-990.                                                                     | 1.9      | 7            |
| 95  | Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial<br>deformation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2368-2373. | 0.9      | 7            |
| 96  | Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 725-745.                                              | 1.5      | 6            |
| 97  | The invariabilities in the free vibrations of carbon nanotube networks with identical boundary conditions. Europhysics Letters, 2009, 88, 26006.                                                       | 0.7      | 5            |
| 98  | Multiple-cell elements and regular multifractals. Applied Mathematics and Mechanics (English) Tj ETQq0 0 0 rgBT                                                                                        | Qverlock | 19 Tf 50 462 |
| 99  | Advancements in multiresolution analysis. International Journal for Numerical Methods in Engineering, 2015, 102, 784-807.                                                                              | 1.5      | 5            |
| 100 | Surface Instability of Bilayer Hydrogel Subjected to Both Compression and Solvent Absorption.<br>Polymers, 2018, 10, 624.                                                                              | 2.0      | 5            |

| 101 | Investigation on thermo-mechanical behaviors of artificial muscle films. Journal of Materials Science, 2008, 43, 3733-3737.                                            | 1.7 | 4 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 102 | Shape-Dependent Transport of Microparticles in Blood Flow: From Margination to Adhesion. Journal of Engineering Mechanics - ASCE, 2019, 145, .                         | 1.6 | 4 |
| 103 | Effects of Distance and Alignment Holes on Fatigue Crack Behaviors of Cast Magnesium Alloys.<br>Advanced Materials Research, 2008, 33-37, 13-18.                       | 0.3 | 3 |
| 104 | Super carbon nanotubes, fractal super tubes and fractal super fibres. Materials Science and Technology, 2010, 26, 1327-1331.                                           | 0.8 | 2 |
| 105 | From fractal to multifractal super fibres and wool fibres with exceptional mechanical properties.<br>Materials Science and Technology, 2010, 26, 1323-1326.            | 0.8 | 2 |
| 106 | Computational Modeling of the Effect of Sulci during Tumor Growth and Cerebral Edema. Journal of Nanomaterials, 2016, 2016, 1-9.                                       | 1.5 | 2 |
| 107 | Anisotropy diffusion of water nanodroplets on phosphorene: Effects of pre-compressive deformation and temperature. Computational Materials Science, 2020, 178, 109623. | 1.4 | 2 |
| 108 | The Effect of Void Arrangement on the Pattern Transformation of Porous Soft Solids under Biaxial                                                                       | 1.3 | 2 |

<sup>8</sup> Loading. Materials, 2021, 14, 1205.

| #   | Article                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Investigation on Characteristics of Structure and Simulation Analysis for Dragonfly Wing Vein.<br>Advanced Materials Research, 2008, 33-37, 785-788. | 0.3 | 1         |
| 110 | Tuning Surface Morphology of Polymer Films Through Bilayered Structures, Mechanical Forces, and External Stimuli. , 2019, , 291-314.                 |     | 1         |
| 111 | 20. Multiscale modeling of lipid membrane. , 2019, , 569-602.                                                                                        |     | Ο         |
| 112 | Adhesive rolling of nanoparticles in a lateral flow inspired from diagnostics of COVID-19. Extreme Mechanics Letters, 2021, 44, 101239.              | 2.0 | 0         |
| 113 | Adhesion behavior of a single cell on the endothelial wall. , O, , .                                                                                 |     | 0         |
| 114 | Numerical methods: fluidâ $\in$ "structure interaction and adhesive dynamics. , 0, , .                                                               |     | 0         |
| 115 | Localization of soft particles: margination and adhesion. , 0, , .                                                                                   |     | Ο         |