Ivo W Rangelow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107436/publications.pdf

Version: 2024-02-01

161 2,787 28 45
papers citations h-index g-index

161 161 2165
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mask-less nano-structuring of hydrogen terminated diamond using localized field emission scanning probe lithography (FE-SPL). Applied Physics Letters, 2022, 120, 093503.	1.5	1
2	Advanced Scanning Probe Nanolithography Using GaN Nanowires. Nano Letters, 2021, 21, 5493-5499.	4.5	9
3	Tip- and Laser-based 3D Nanofabrication in Extended Macroscopic Working Areas. Nanomanufacturing and Metrology, 2021, 4, 132-148.	1.5	10
4	Line edge roughness metrology software. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	4
5	Field emission scanning probe lithography with GaN nanowires on active cantilevers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032806.	0.6	3
6	Silk as a biodegradable resist for field-emission scanning probe lithography. Nanotechnology, 2020, 31, 435303.	1.3	1
7	Mix-and-match lithography and cryogenic etching for NIL template fabrication. Microelectronic Engineering, 2020, 224, 111234.	1.1	13
8	Cryogenic etching for pattern transfer into silicon of Mix-and-Match structured resist layers. Microelectronic Engineering, 2020, 227, 111325.	1.1	6
9	Scanning probe lithography on calixarene towards single-digit nanometer fabrication. International Journal of Extreme Manufacturing, 2020, 2, 032005.	6.3	17
10	Determination of the mixing ratio of aÂflowing gas mixture with self-actuated microcantilevers. Journal of Sensors and Sensor Systems, 2020, 9, 71-78.	0.6	3
11	Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes. Nanomaterials, 2019, 9, 1013.	1.9	9
12	Balancing ion parameters and fluorocarbon chemical reactants for SiO2 pattern transfer control using fluorocarbon-based atomic layer etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	5
13	Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing. Sensors, 2019, 19, 4429.	2.1	9
14	An Integrated in SEM Multi-Purpose AFM Instrument Utilizing an Active Cantilever. Microscopy and Microanalysis, 2019, 25, 806-807.	0.2	0
15	Active Cantilevers with Diamond-Tip for Field Emission Scanning Probe Lithography and Imaging. , 2019,		0
16	Nanoscale lift-off process using field emission scanning probe lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	3
17	Tip-based nano-manufacturing and -metrology. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	10
18	Atomic layer etching of SiO ₂ with Ar and CHF ₃ plasmas: A selfâ€limiting process for aspect ratio independent etching. Plasma Processes and Polymers, 2019, 16, 1900051.	1.6	29

#	Article	IF	Citations
19	High-throughput process chain for single electron transistor devices based on field-emission scanning probe lithography and Smart Nanoimprint lithography technology. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 021603.	0.6	4
20	Probe-induced resistive switching memory based on organic-inorganic lead halide perovskite materials. Organic Electronics, 2019, 69, 106-113.	1.4	13
21	Correlative Microscopy and Nanofabrication with AFM Integrated with SEM. Microscopy Today, 2019, 27, 24-30.	0.2	11
22	Temperature and oxygen concentration effects on anisotropy in chromium hard mask etching for nanoscale fabrication. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	6
23	Tip-based electron beam induced deposition using active cantilevers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	4
24	Parallel active cantilever AFM tool for high-throughput inspection and metrology. , 2019, , .		1
25	Micro- and nanofabrication technologies using the nanopositioning and nanomeasuring machines. , 2019, , .		0
26	High throughput AFM inspection system with parallel active cantilevers. , 2019, , .		1
27	Atomic force microscope integrated into a scanning electron microscope for fabrication and metrology at the nanometer scale. , 2019, , .		4
28	Nanofabrication by field-emission scanning probe lithography and cryogenic plasma etching. Microelectronic Engineering, 2018, 192, 77-82.	1.1	12
29	Thermomechanically and electromagnetically actuated piezoresistive cantilevers for fast-scanning probe microscopy investigations. Sensors and Actuators A: Physical, 2018, 276, 237-245.	2.0	11
30	Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode. Ultramicroscopy, 2018, 184, 199-208.	0.8	9
31	Polymer–metal coating for high contrast SEM cross sections at the deep nanoscale. Nanoscale, 2018, 10, 22884-22895.	2.8	1
32	Charged particle single nanometre manufacturing. Beilstein Journal of Nanotechnology, 2018, 9, 2855-2882.	1.5	7
33	Sharp GaN nanowires used as field emitter on active cantilevers for scanning probe lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	5
34	Field-emission scanning probe lithography tool for 150 mm wafer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	10
35	Heterodyne standing-wave interferometer / Heterodynes Stehende-Welle-Interferometer. TM Technisches Messen, 2018, 85, s80-s85.	0.3	2
36	Room-temperature single dopant atom quantum dot transistors in silicon, formed by field-emission scanning probe lithography. Journal of Applied Physics, 2018, 124, .	1.1	27

3

#	Article	IF	Citations
37	Field emission from diamond nanotips for scanning probe lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	26
38	Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	22
39	Theoretical investigation of the enhancement factor for a single field emitter in close proximity to the counter electrode. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 06JL01.	0.6	5
40	Experimental study of field emission from ultrasharp silicon, diamond, GaN, and tungsten tips in close proximity to the counter electrode. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	13
41	Atomic layer deposition for spacer defined double patterning of sub-10 nm titanium dioxide features. Nanotechnology, 2018, 29, 405302.	1.3	19
42	Towards alternative 3D nanofabrication in macroscopic working volumes. Measurement Science and Technology, $2018, 29, 114002$.	1.4	10
43	Field-emission scanning probe lithography with self-actuating and self-sensing cantilevers for devices with single digit nanometer dimensions. , $2018, \ldots$		5
44	Single nano-digit and closed-loop scanning probe lithography for manufacturing of electronic and optical nanodevices. , $2018, \dots$		3
45	Fabrication of optical nanodevices through field-emission scanning probe lithography and cryogenic etching. , $2018, , .$		0
46	Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection. Measurement Science and Technology, 2017, 28, 034011.	1.4	9
47	Low-energy electron exposure of ultrathin polymer films with scanning probe lithography. Microelectronic Engineering, 2017, 177, 78-86.	1.1	12
48	Scanning probe-based high-accuracy overlay alignment concept for lithography applications. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	10
49	Simulation of field emission from volcano-gated tips for scanning probe lithography. Microelectronic Engineering, 2017, 177, 19-24.	1.1	11
50	Monolithic technology for silicon nanowires in high-topographyÂarchitectures. Microelectronic Engineering, 2017, 183-184, 42-47.	1,1	12
51	Review Article: Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	44
52	Simulation of Fowler-Nordheim emission for scanning probe lithography., 2017,,.		1
53	Fabrication Process for an Optomechanical Transducer Platform with Integrated Actuation. Journal of Research of the National Institute of Standards and Technology, 2016, 121, 507.	0.4	5
54	Next generation lithographyâ€"the rise of unconventional methods?. Frontiers of Nanoscience, 2016, 11, 479-495.	0.3	5

#	Article	IF	Citations
55	Tip-based nanolithography methods and materials. Frontiers of Nanoscience, 2016, , 497-542.	0.3	7
56	Pattern-generation and pattern-transfer for single-digit nano devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	34
57	Large area fast-AFM scanning with active "Quattro―cantilever arrays. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	27
58	Six-axis AFM in SEM with self-sensing and self-transduced cantilever for high speed analysis and nanolithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	17
59	Control of first and higher transverse eigenmodes of active Atomic Force Microscope cantilevers. , 2016, , .		O
60	Cantilever array with optomechanical read-out and integrated actuation for simultaneous high sensitivity force detection. , 2016 , , .		3
61	Low temperature dry etching of chromium towards control at sub-5 nm dimensions. Nanotechnology, 2016, 27, 415302.	1.3	8
62	Thermo-mechanical transduction suitable for high-speed scanning probe imaging and lithography. Microelectronic Engineering, 2016, 154, 1-7.	1.1	22
63	Tip Motionâ€"Sensor Signal Relation for a Composite SPM/SPL Cantilever. Journal of Microelectromechanical Systems, 2016, 25, 78-90.	1.7	13
64	Selective Laser Ablation in Resists and Block Copolymers for High Resolution Lithographic Patterning. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 663-668.	0.1	4
65	Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy. Nanotechnology, 2015, 26, 235706.	1.3	18
66	Self-actuated, self-sensing cantilever for fast CD measurement. Proceedings of SPIE, 2015, , .	0.8	5
67	Fabrication of self-actuated piezoresistive thermal probes. Microelectronic Engineering, 2015, 145, 32-37.	1.1	11
68	Active Microcantilevers for High Material Contrast in Harmonic Atomic Force Microscopy. Journal of Microelectromechanical Systems, 2015, 24, 1622-1631.	1.7	10
69	Fast atomic force microscopy with self-transduced, self-sensing cantilever. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2015, 14, 031209.	1.0	16
70	Advanced electric-field scanning probe lithography on molecular resist using active cantilever. Proceedings of SPIE, 2015, , .	0.8	9
71	Profile simulation model for sub-50 nm cryogenic etching of silicon using SF6/O2 inductively coupled plasma. Journal of Applied Physics, 2015, 118, .	1.1	23
72	Estimator based multi-eigenmode control of cantilevers in multifrequency Atomic Force Microscopy. , 2015, , .		3

#	Article	IF	Citations
73	Tailored molecular glass resists for scanning probe lithography. Proceedings of SPIE, 2015, , .	0.8	7
74	Advanced electric-field scanning probe lithography on molecular resist using active cantilever. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2015, 14, 031202.	1.0	29
75	Local formation of nitrogen-vacancy centers in diamond by swift heavy ions. Journal of Applied Physics, 2014, 116, .	1.1	15
76	Thermographischer Detektor basierend auf einem neuartigen Mikro-Spiegel Sensor. TM Technisches Messen, 2014, 81, 219-227.	0.3	0
77	Low Frequency Measurements Using Piezoresistive Cantilever MEMS Devices – The Problem of Thermal Drift. Procedia Engineering, 2014, 87, 1259-1262.	1.2	1
78	Adaptive AFM scan speed control for high aspect ratio fast structure tracking. Review of Scientific Instruments, 2014, 85, 103706.	0.6	27
79	Shear force microscopy using piezoresistive cantilevers in surface metrology., 2014, , .		2
80	Parallel SPM cantilever arrays for large area surface metrology and lithography. Proceedings of SPIE, 2014, , .	0.8	3
81	Electric field scanning probe lithography on molecular glass resists using self-actuating, self-sensing cantilever. Proceedings of SPIE, 2014 , , .	0.8	11
82	Molecular glass resists for scanning probe lithography. Proceedings of SPIE, 2014, , .	0.8	11
83	Microthermomechanical infrared sensors. Opto-electronics Review, 2014, 22, 1-15.	2.4	25
84	Single mask fabrication process for movable MEMS devices. Microsystem Technologies, 2014, 20, 955-961.	1.2	1
85	ViPER: simulation software for high aspect ratio plasma etching of silicon. Microsystem Technologies, 2014, 20, 1791-1796.	1.2	9
86	Review of scanning probe micromachining and its applications within nanoscience. Microelectronic Engineering, 2014, 126, 191-203.	1.1	53
87	Scanning probes in nanostructure fabrication. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	33
88	Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 031111.	1.0	49
89	Mix & match electron beam & scanning probe lithography for high throughput sub-10 nm lithography. Proceedings of SPIE, 2013, , .	0.8	8
90	$0.1\mbox{-}nanometer$ resolution positioning stage for sub-10 nm scanning probe lithography. Proceedings of SPIE, 2013, , .	0.8	14

#	Article	IF	Citations
91	Scanning probe lithography approach for beyond CMOS devices. Proceedings of SPIE, 2013, , .	0.8	13
92	Improved single ion implantation with scanning probe alignment. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, $2012,30,$.	0.6	12
93	ARCH-type micro-cantilever FPA for uncooled IR detection. Microelectronic Engineering, 2012, 98, 614-618.	1.1	7
94	Charging effect simulation model used in simulations of plasma etching of silicon. Journal of Applied Physics, 2012, 112, .	1.1	38
95	Scanning probe nanolithography on calixarene. Microelectronic Engineering, 2012, 97, 96-99.	1.1	32
96	Irregular film thickness distribution in C4F8 inductively coupled plasma polymer deposition. Microelectronic Engineering, 2012, 98, 524-527.	1.1	2
97	Micromachined self-actuated piezoresistive cantilever for high speed SPM. Microelectronic Engineering, 2012, 97, 265-268.	1.1	20
98	High speed quasi-monolithic silicon/piezostack SPM scanning stage. Microelectronic Engineering, 2012, 98, 520-523.	1.1	18
99	Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup. Micron, 2012, 43, 1399-1407.	1.1	19
100	The spring constant calibration of the piezoresistive cantilever based biosensor. Sensors and Actuators B: Chemical, 2012, 170, 201-206.	4.0	30
101	Thermally driven multi-layer actuator for 2D cantilever arrays. Applied Physics A: Materials Science and Processing, 2011, 102, 61-68.	1.1	9
102	Scanning proximal probe lithography for sub-10 nm resolution on calix[4]resorcinarene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	32
103	Development and modeling of an electrothermally MEMS microactuator with an integrated microgripper. Journal of Micromechanics and Microengineering, 2011, 21, 125026.	1.5	13
104	Characterization of an electro-thermal micro gripper and tip sharpening using FIB technique. Microsystem Technologies, 2010, 16, 1901-1908.	1.2	8
105	Nanoscale Engineering and Optical Addressing of Single Spins in Diamond. Small, 2010, 6, 2117-2121.	5.2	100
106	Nanostructuring Techniques for 3C-SiC(100) NEMS Structures. Materials Science Forum, 2010, 645-648, 841-844.	0.3	3
107	Micromachined scanning proximal probes with integrated piezoresistive readout and bimetal actuator for high eigenmode operation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6N12-C6N17.	0.6	16
108	Nanoprobe maskless lithography. Proceedings of SPIE, 2010, , .	0.8	25

#	Article	IF	CITATIONS
109	DMCMN: In Depth Characterization and Control of AFM Cantilevers With Integrated Sensing and Actuation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2009, 131, .	0.9	28
110	Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid. Nanotechnology, 2009, 20, 434003.	1.3	40
111	Thermally driven piezoresistive cantilevers for shear-force microscopy. Microelectronic Engineering, 2009, 86, 1212-1215.	1.1	16
112	Quantitative force and mass measurements using the cantilever with integrated actuator and deflection detector. Microelectronic Engineering, 2009, 86, 1043-1045.	1.1	14
113	Integrated plasma processing simulation framework, linking tool scale plasma models with 2D feature scale etch simulator. Microelectronic Engineering, 2009, 86, 976-978.	1.1	7
114	Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution. Applied Physics A: Materials Science and Processing, 2008, 91, 567-571.	1.1	64
115	Controllable off-plane deflection of cantilevers for multiple scanning proximity probe arrays. Applied Physics A: Materials Science and Processing, 2008, 92, 525-530.	1.1	13
116	New method for the precise flux calculation of neutrals for arbitrary surfaces in profile etch simulations. Microelectronic Engineering, 2008, 85, 982-984.	1.1	7
117	Experimental setup for characterization of self-actuated microcantilevers with piezoresistive readout for chemical recognition of volatile substances. Review of Scientific Instruments, 2008, 79, 094101.	0.6	5
118	On Total Internal Reflection Investigation of Nanoparticles by Integrated Micro-Fluidic System. Nano Letters, 2008, 8, 375-381.	4.5	8
119	Design and Fabrication of a Horizontal Thermal Micro-Actuator with Integrated Micro Tweezers. Advances in Science and Technology, 2008, 54, 378-383.	0.2	0
120	Imaging Cellular and Viral Materials with Small Cantilevers Developed for High Speed Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2007, 1025, 1.	0.1	0
121	Nanoscale pattern transfer for templates, NEMS, and nano-optics. , 2007, , .		7
122	Duo-action electro thermal micro gripper. Microelectronic Engineering, 2007, 84, 1329-1332.	1.1	22
123	Inverse microemulsion copolymerization of butyl acrylate and acrylamide: kinetics, colloidal parameters and some model applications. Polymer International, 2007, 56, 364-370.	1.6	7
124	Investigation of the sorption properties of thin Ge–S–AgI films deposited on cantilever-based gas sensor. Applied Physics A: Materials Science and Processing, 2007, 87, 31-36.	1.1	12
125	Piezoresistive and self-actuated 128-cantilever arrays for nanotechnology applications. Microelectronic Engineering, 2007, 84, 1260-1264.	1.1	44
126	Microemulsion Polymerization of Butyl Acrylate under Ultrasound Irradiation. Polymer Journal, 2006, 38, 264-276.	1.3	8

#	Article	IF	CITATIONS
127	Hierarchical interconnections in the nano-composite material bone: Fibrillar cross-links resist fracture on several length scales. Composites Science and Technology, 2006, 66, 1205-1211.	3.8	66
128	Micro-fluidic analysis based on total internal light reflection. Microelectronic Engineering, 2006, 83, 1294-1297.	1.1	6
129	Scanning proximity probes for nanoscience and nanofabrication. Microelectronic Engineering, 2006, 83, 1449-1455.	1.1	29
130	Strategies for integration of donor electron spin qubits in silicon. Microelectronic Engineering, 2006, 83, 1814-1817.	1.1	13
131	Aspect ratio dependent plasma polymer deposition of fluorocarbons. Microelectronic Engineering, 2006, 83, 1174-1177.	1.1	8
132	Nano-line width control and standards using Lateral Pattern Definition technique. Microelectronic Engineering, 2006, 83, 1555-1558.	1.1	7
133	Components for high speed atomic force microscopy. Ultramicroscopy, 2006, 106, 881-887.	0.8	220
134	Concept of deterministic single ion doping with sub-nm spatial resolution. Applied Physics A: Materials Science and Processing, 2006, 83, 321-327.	1.1	59
135	Diffraction under total internal reflection for micro-fluidic analysis. Applied Physics A: Materials Science and Processing, 2006, 84, 191-196.	1.1	6
136	Mechanical characterization of membrane like microelectronic components. Microelectronic Engineering, 2006, 83, 1036-1042.	1.1	4
137	Thermally driven microgripper as a tool for micro assembly. Microelectronic Engineering, 2006, 83, 1393-1395.	1.1	44
138	Raster-Sonden-Mikroskopie mit Cantilever-Arrays (Scanning Probe Microscopy with Cantilever) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 30
139	Refractometric investigation and analysis of nano-scaled dispersions., 2005, 5830, 491.		0
140	Radicals transport modelling in NANOJET. Applied Physics A: Materials Science and Processing, 2005, 81, 1661-1666.	1.1	2
141	Application of a Scanning Thermal Nano-Probe for Thermal Imaging of High Frequency Active devices. Japanese Journal of Applied Physics, 2005, 44, 6823-6825.	0.8	5
142	Profile evolution of Cr masked features undergoing HBr-inductively coupled plasma etching for use in 25â€,nm silicon nanoimprint templates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2073.	1.6	14
143	Integration of Scanning Probes and Ion Beams. Nano Letters, 2005, 5, 1087-1091.	4.5	43
144	Microfabricated cantilever with metallic tip for electrostatic and capacitance microscopy and its application to investigation of semiconductor devices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 506.	1.6	5

#	Article	IF	Citations
145	Investigations of the sorption behaviour of amorphous nitrogen-rich carbon nitride films as sensitive layers for cantilever-based chemical sensors. Applied Physics A: Materials Science and Processing, 2004, 79, 531-536.	1.1	6
146	Nanostructuring of Mo/Si multilayers by means of reactive ion etching using a three-level mask. Thin Solid Films, 2004, 458, 227-232.	0.8	1
147	Chromium nano-width ribbons by standard lithography and wet etching. Microelectronic Engineering, 2004, 73-74, 588-593.	1.1	1
148	Sensors for scanning probe microscopy. Applied Physics A: Materials Science and Processing, 2003, 76, 907-911.	1.1	9
149	The influence of reactant transport on the profiles of gas chopping etching processes: a simulation approach. Microelectronic Engineering, 2003, 67-68, 338-348.	1.1	20
150	Quantum size aspects of the piezoresistive effect in ultra thin piezoresistors. Ultramicroscopy, 2003, 97, 377-384.	0.8	39
151	Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy. Ultramicroscopy, 2003, 97, 385-389.	0.8	30
152	Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1550-1562.	0.9	167
153	Thermal imaging of microwave power GaAs-FET with scanning thermal nanoprobe. , 2002, , .		2
154	Dry etching-based silicon micro-machining for MEMS. Vacuum, 2001, 62, 279-291.	1.6	54
155	Piezoresistive sensors for scanning probe microscopy. Ultramicroscopy, 2000, 82, 39-48.	0.8	104
156	Lithographie der nÄehsten Generation: Angesichts milliardenschwerer Entwicklungskosten muss die Industrie zwischen vier lithographischen Verfahren auswÄ h len. Physik Journal, 2000, 56, 31-36.	0.1	10
157	Dry etching with gas chopping without rippled sidewalls. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 2768.	1.6	56
158	<title> Fabrication of piezoresistive-sensed AFM cantilever probe with integrated tip</title> . Proceedings of SPIE, 1996, , .	0.8	28
159	Lateral force microscopy using cantilevers with integrated Wheatstone bridge piezoresistive deflection sensor. Proceedings of SPIE, 1996, , .	0.8	5
160	<title>High-resolution tri-level process by downstream-microwave rf-biased etching</title> ., 1991,,.		16
161	Scanning probe lithography for electronics at the 5nm scale. SPIE Newsroom, 0, , .	0.1	7