Séverin Hatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107294/publications.pdf

Version: 2024-02-01

687363 677142 23 638 13 22 citations h-index g-index papers 23 23 23 655 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Wheat (<i>Triticum aestivum</i> L.)-based intercropping systems for biological pest control. Pest Management Science, 2016, 72, 2193-2202.	3.4	88
2	Nine facultative endosymbionts in aphids. A review. Journal of Asia-Pacific Entomology, 2017, 20, 794-801.	0.9	82
3	Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective. Science of the Total Environment, 2018, 621, 600-611.	8.0	68
4	Pest regulation and support of natural enemies in agriculture: Experimental evidence of within field wildflower strips. Ecological Engineering, 2017, 98, 240-245.	3.6	62
5	A push–pull strategy to control aphids combines intercropping with semiochemical releases. Journal of Pest Science, 2018, 91, 93-103.	3.7	51
6	Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod-Plant Interactions, 2018, 12, 787-797.	1.1	33
7	Increasing plant functional diversity is not the key for supporting pollinators in wildflower strips. Agriculture, Ecosystems and Environment, 2017, 249, 144-155.	5.3	31
8	Do flower mixtures with high functional diversity enhance aphid predators in wildflower strips?. European Journal of Entomology, 0, 114 , $66-76$.	1.2	31
9	Flower Strips in Wheat Intercropping System: Effect on Pollinator Abundance and Diversity in Belgium. Insects, 2018, 9, 114.	2.2	28
10	Flower strips adjacent to greenhouses help reduce pest populations and insecticide applications inside organic commercial greenhouses. Journal of Pest Science, 2021, 94, 679-689.	3.7	25
11	Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomologia Generalis, 2019, 38, 275-315.	3.1	23
12	Identification of flower functional traits affecting abundance of generalist predators in perennial multiple species wildflower strips. Arthropod-Plant Interactions, 2019, 13, 127-137.	1.1	23
13	Creating Perennial Flower Strips: Think Functional!. Agriculture and Agricultural Science Procedia, 2015, 6, 95-101.	0.6	16
14	The role of Perilla frutescens flowers on fitness traits of the ladybird beetle Harmonia axyridis. BioControl, 2019, 64, 381-390.	2.0	16
15	Perennial Flowering Strips for Conservation Biological Control of Insect Pests: From Picking and Mixing Flowers to Tailored Functional Diversity. Progress in Biological Control, 2020, , 57-71.	0.5	11
16	Effects of Wildflower Strips and an Adjacent Forest on Aphids and Their Natural Enemies in a Pea Field. Insects, 2017, 8, 99.	2.2	10
17	Combining <i>E</i> -β-farnesene and methyl salicylate release with wheat-pea intercropping enhances biological control of aphids in North China. Biocontrol Science and Technology, 2018, 28, 883-894.	1.3	10
18	Beyond "greening― which paradigms shape sustainable pest management strategies in the European Union?. BioControl, 2019, 64, 343-355.	2.0	9

SéVERIN HATT

#	Article	IF	CITATIONS
19	Do Wildflower Strips Favor Insect Pest Populations at Field Margins?. Agriculture and Agricultural Science Procedia, 2015, 6, 30-37.	0.6	6
20	Checklist of Aphidiinae (Hymenoptera: Braconidae) and Aphelinus (Hymenoptera: Aphelinidae) species from Belgium with respectively four and three new records. Zootaxa, 2016, 4092, 548-60.	0.5	4
21	Fitness costs of reflex bleeding in the ladybird beetle <i>Harmonia axyridis</i> : the role of parental effects. Insect Science, 2020, 27, 1346-1359.	3.0	4
22	Conservation Biological Control in Organic Greenhouse Vegetables. Progress in Biological Control, 2020, , 133-144.	0.5	4
23	High Variability in Pre-Oviposition Time Independent of Diet Available at Eclosion: A key Reproductive Trait in the Ladybird Beetle Harmonia axyridis (Coleoptera: Coccinellidae) in Its Native Range. Insects, 2021, 12, 382.	2.2	3