Chao-Feng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calmodulinâ€like protein CML24 interacts with CAMTA2 and WRKY46 to regulate <i>ALMT1</i> â€dependent Al resistance in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 233, 2471-2487.	3.5	37
2	<scp>NRAMP6</scp> and <scp>NRAMP1</scp> cooperatively regulate root growth and manganese translocation under manganese deficiency in Arabidopsis. Plant Journal, 2022, 110, 1564-1577.	2.8	22
3	Golgi″ocalised manganese transporter PML3 regulates <i>Arabidopsis</i> growth through modulating Golgi glycosylation and cell wall biosynthesis. New Phytologist, 2021, 231, 2200-2214.	3.5	33
4	The SUMO E3 ligase SIZ1 partially regulates STOP1 SUMOylation and stability in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2021, 16, 1899487.	1.2	20
5	Activation and activity of STOP1 in aluminium resistance. Journal of Experimental Botany, 2021, 72, 2269-2272.	2.4	7
6	Degradation of STOP1 mediated by the Fâ€box proteins RAH1 and RAE1 balances aluminum resistance and plant growth in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 106, 493-506.	2.8	32
7	The THO/TREX Complex Component RAE2/TEX1 Is Involved in the Regulation of Aluminum Resistance and Low Phosphate Response in Arabidopsis. Frontiers in Plant Science, 2021, 12, 698443.	1.7	10
8	Natural variation in the promoter of <i>OsHMA3</i> contributes to differential grain cadmium accumulation between <i>Indica</i> and <i>Japonica</i> rice. Journal of Integrative Plant Biology, 2020, 62, 314-329.	4.1	72
9	Dysfunction of the 4â€coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. Plant Journal, 2020, 104, 1233-1250.	2.8	18
10	Regulation of Aluminum Resistance in Arabidopsis Involves the SUMOylation of the Zinc Finger Transcription Factor STOP1. Plant Cell, 2020, 32, 3921-3938.	3.1	52
11	Mutation of <i>HPR1</i> encoding a component of the THO/TREX complex reduces STOP1 accumulation and aluminium resistance in <i>Arabidopsis thaliana</i> . New Phytologist, 2020, 228, 179-193.	3.5	29
12	Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. Journal of Integrative Agriculture, 2019, 18, 688-697.	1.7	58
13	F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 319-327.	3.3	98
14	NRAMP2, a transâ€Golgi networkâ€localized manganese transporter, is required for <i>Arabidopsis</i> root growth under manganese deficiency. New Phytologist, 2018, 217, 179-193.	3.5	115
15	DNA demethylase ROS1 negatively regulates the imprinting of <i>DOGL4</i> and seed dormancy in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9962-E9970.	3.3	46
16	The Cell Cycle Checkpoint Regulator ATR Is Required for Internal Aluminum Toxicity-Mediated Root Growth Inhibition in Arabidopsis. Frontiers in Plant Science, 2018, 9, 118.	1.7	16
17	A role of ETR1 in regulating leaf petiole elongation mediated by elevated temperature in Arabidopsis. Plant Growth Regulation, 2018, 86, 311-321.	1.8	0
18	Isolation and Characterization of an Aluminum-resistant Mutant in Rice. Rice, 2016, 9, 60.	1.7	15

CHAO-FENG HUANG

#	Article	IF	CITATIONS
19	A lossâ€ofâ€function allele of <i>OsHMA3</i> associated with high cadmium accumulation in shoots and grain of <i>Japonica</i> rice cultivars. Plant, Cell and Environment, 2016, 39, 1941-1954.	2.8	168
20	Aluminium alleviates fluoride toxicity in tea (Camellia sinensis). Plant and Soil, 2016, 402, 179-190.	1.8	42
21	Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC Plant Biology, 2015, 15, 16.	1.6	48
22	RNA Splicing Factors and RNA-Directed DNA Methylation. Biology, 2014, 3, 243-254.	1.3	14
23	OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014, 65, 4849-4861.	2.4	211
24	A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLoS Genetics, 2013, 9, e1003779.	1.5	58
25	The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Research, 2013, 41, 8489-8502.	6.5	40
26	A leucineâ€rich repeat receptorâ€like kinase gene is involved in the specification of outer cell layers in rice roots. Plant Journal, 2012, 69, 565-576.	2.8	21
27	A tonoplastâ€localized halfâ€size ABC transporter is required for internal detoxification of aluminum in rice. Plant Journal, 2012, 69, 857-867.	2.8	237
28	Comparative Genome-Wide Transcriptional Analysis of Al-Responsive Genes Reveals Novel Al Tolerance Mechanisms in Rice. PLoS ONE, 2012, 7, e48197.	1.1	42
29	Knockout of a Bacterial-Type ATP-Binding Cassette Transporter Gene, <i>AtSTAR1</i> , Results in Increased Aluminum Sensitivity in Arabidopsis. Plant Physiology, 2010, 153, 1669-1677.	2.3	112
30	Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16500-16505.	3.3	693
31	A Bacterial-Type ABC Transporter Is Involved in Aluminum Tolerance in Rice. Plant Cell, 2009, 21, 655-667.	3.1	356
32	A Zinc Finger Transcription Factor ART1 Regulates Multiple Genes Implicated in Aluminum Tolerance in Rice Â. Plant Cell, 2009, 21, 3339-3349.	3.1	347
33	A Rice Mutant Sensitive to Al Toxicity is Defective in the Specification of Root Outer Cell Layers. Plant and Cell Physiology, 2009, 50, 976-985.	1.5	28
34	NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Research, 2009, 19, 598-611.	5.7	74
35	Isolation and Characterization of a Rice Mutant Hypersensitive to Al. Plant and Cell Physiology, 2005, 46, 1054-1061.	1.5	41
36	Editorial: Al-Induced and -Activated Signals in Aluminium Resistance. Frontiers in Plant Science, 0, 13, .	1.7	0