Chang-An Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3107046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceramics International, 2016, 42, 2907-2925.	4.8	177
2	An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature Energy, 2018, 3, 732-738.	39.5	170
3	Ceramics with Special Porous Structures Fabricated by Freezeâ€Gelcasting: Using tertâ€Butyl Alcohol as a Template. Journal of the American Ceramic Society, 2007, 90, 3478-3484.	3.8	165
4	A dopamine modified Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ /PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A, 2019, 7, 16425-16436.	10.3	162
5	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
6	Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 2010, 30, 3389-3396.	5.7	136
7	Design and Preparation of MnO ₂ /CeO ₂ –MnO ₂ Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 8670-8677.	8.0	128
8	High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochemistry Communications, 2011, 13, 1289-1292.	4.7	125
9	Processing and Mechanical Properties of Zirconium Diboride-Based Ceramics Prepared by Spark Plasma Sintering. Journal of the American Ceramic Society, 2007, 90, 1992-1997.	3.8	118
10	High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries. Joule, 2020, 4, 262-274.	24.0	109
11	A possible mechanism on synthesis of Ti3AlC2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 333-339.	5.6	107
12	Porous anorthite ceramics with ultra-low thermal conductivity. Journal of the European Ceramic Society, 2013, 33, 2573-2578.	5.7	107
13	Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of Materials Science, 2010, 45, 3242-3246.	3.7	105
14	Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering. Journal of Materials Science, 2003, 38, 3111-3115.	3.7	101
15	Effect of starch addition on microstructure and properties of highly porous alumina ceramics. Ceramics International, 2013, 39, 8833-8839.	4.8	100
16	Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible. Journal of Power Sources, 2014, 260, 109-114.	7.8	100
17	Polyacrylamide-clay nacre-like nanocomposites prepared by electrophoretic deposition. Composites Science and Technology, 2007, 67, 2770-2774.	7.8	98
18	Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 12782-12793.	10.3	93

#	Article	IF	CITATIONS
19	Li-Ion Conduction and Stability of Perovskite Li _{3/8} Sr _{7/16} Hf _{1/4} Ta _{3/4} O ₃ . ACS Applied Materials & Interfaces, 2016, 8, 14552-14557.	8.0	89
20	Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics International, 2010, 36, 1697-1701.	4.8	88
21	Ceramics With Ultra-Low Density Fabricated by Gelcasting: An Unconventional View. Journal of the American Ceramic Society, 2007, 90, 3424-3429.	3.8	84
22	Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis. Journal of Materials Science Letters, 2001, 20, 1971-1973.	0.5	81
23	Strong metal-support interactions induced by an ultrafast laser. Nature Communications, 2021, 12, 6665.	12.8	80
24	An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure. Materials Science and Engineering C, 2008, 28, 218-222.	7.3	79
25	Carbonâ€based flexible selfâ€supporting cathode for lithiumâ€sulfur batteries: Progress and perspective. , 2021, 3, 271-302.		77
26	A novel simple method to stably synthesize Ti3AlC2 powder with high purity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 428, 54-58.	5.6	74
27	Mullite whisker reinforced porous anorthite ceramics with low thermal conductivity and high strength. Journal of the European Ceramic Society, 2016, 36, 761-765.	5.7	73
28	Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. Journal of the European Ceramic Society, 2013, 33, 1859-1865.	5.7	70
29	A novel way to fabricate highly porous fibrous YSZ ceramics with improved thermal and mechanical properties. Journal of the European Ceramic Society, 2012, 32, 2213-2218.	5.7	69
30	Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Materials and Design, 2016, 97, 512-518.	7.0	66
31	A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm ^{â^2} observed in situ in a capillary cell. Journal of Materials Chemistry A, 2017, 5, 4300-4307.	10.3	66
32	A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 2013, 33, 3249-3256.	5.7	65
33	Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2015, 134, 268-274.	6.2	64
34	Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics. Journal of the European Ceramic Society, 2011, 31, 605-609.	5.7	63
35	Hierarchically porous Co3O4 hollow spheres with tunable pore structure and enhanced catalytic activity. Chemical Communications, 2013, 49, 7427.	4.1	59
36	Control of Composition and Structure in Laminated Silicon Nitride/Boron Nitride Composites. Journal of the American Ceramic Society, 2002, 85, 2457-2461.	3.8	55

#	Article	IF	CITATIONS
37	Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceramics International, 2010, 36, 549-554.	4.8	54
38	Enhanced Performance of Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ Solid Electrolyte by the Regulation of Grain and Grain Boundary Phases. ACS Applied Materials & Interfaces, 2020, 12, 56118-56125.	8.0	54
39	Porous yttriaâ€&tabilized Zirconia Ceramics Fabricated by Nonaqueousâ€Based Gelcasting Process with <scp>PMMA</scp> Microsphere as Poreâ€Forming Agent. Journal of the American Ceramic Society, 2013, 96, 266-271.	3.8	51
40	Quantitative phase analysis in the Ti–Al–C ternary system by X-ray diffraction. Powder Diffraction, 2005, 20, 218-223.	0.2	49
41	A high-performance potassium metal battery using safe ionic liquid electrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27847-27853.	7.1	49
42	Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 2011, 94, 1794-1799.	3.8	48
43	Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering. Ceramics International, 2019, 45, 18115-18118.	4.8	46
44	Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBAâ€Based Gelâ€Casting Process. Journal of the American Ceramic Society, 2010, 93, 1427-1431.	3.8	45
45	Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials and Design, 2016, 91, 242-247.	7.0	43
46	Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 11802-11812.	5.1	43
47	Microstructure and Electrical Properties of Porous PZT Ceramics Fabricated by Different Methods. Journal of the American Ceramic Society, 2010, 93, 1984-1990.	3.8	39
48	Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high-temperature synthesis (SHS). Journal of Advanced Ceramics, 2022, 11, 172-183.	17.4	39
49	Fabrication of porous alumina–zirconia ceramics by gel-casting and infiltration methods. Materials & Design, 2014, 63, 1-5.	5.1	36
50	Nanosecond Laser Cleaning Method to Reduce the Surface Inert Layer and Activate the Garnet Electrolyte for a Solid-State Li Metal Battery. ACS Applied Materials & Interfaces, 2021, 13, 37082-37090.	8.0	35
51	Special assembly of laminated nanocomposite that mimics nacre. Materials Science and Engineering C, 2008, 28, 1031-1037.	7.3	34
52	Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process. Journal of the European Ceramic Society, 2016, 36, 2647-2652.	5.7	34
53	Smart tuning of 3D ordered electrocatalysts for enhanced oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 219, 640-644.	20.2	33
54	Al2O3-fiber-reinforced porous YSZ ceramics with high mechanical strength. Ceramics International, 2014, 40, 10329-10335.	4.8	32

#	Article	IF	CITATIONS
55	Blending Poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake Rheomixer without any solvent: A low-cost manufacture method for mass production of composite polymer electrolyte. Journal of Power Sources, 2020, 451, 227797.	7.8	32
56	Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 2010, 108, .	2.5	31
57	Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Part II: temperature dependence of thermophysical properties. Journal of Materials Science, 2011, 46, 623-628.	3.7	31
58	Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: Fabrication and application in lithium–hydrogen peroxide semi-fuel cell. Electrochemistry Communications, 2014, 48, 147-150.	4.7	31
59	Extremely facile synthesis of manganese dioxide-polyaniline nano-reticulation with enhanced electrochemical properties. Journal of Alloys and Compounds, 2016, 677, 281-287.	5.5	31
60	Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. Journal of Power Sources, 2019, 412, 321-330.	7.8	31
61	Microstructure and mechanical properties of high entropy CrMnFeCoNi alloy processed by electopulsing-assisted ultrasonic surface rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 140004.	5.6	31
62	Piezoelectric Properties of a Pioneering 3â€1 Type <scp>PZT</scp> /Epoxy Composites Based on Freeze asting Processing. Journal of the American Ceramic Society, 2014, 97, 1511-1516.	3.8	30
63	In situ preparation of a binder-free nano-cotton-like CuO–Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 19781-19789.	10.3	30
64	Flower-like Hollow MoSe ₂ Nanospheres as Efficient Earth-Abundant Electrocatalysts for Nitrogen Reduction Reaction under Ambient Conditions. Inorganic Chemistry, 2020, 59, 12941-12946.	4.0	28
65	Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 2011, 31, 2915-2922.	5.7	27
66	Improved Heat Insulation and Mechanical Properties of Highly Porous <scp>YSZ</scp> Ceramics After Silica Aerogels Impregnation. Journal of the American Ceramic Society, 2013, 96, 3223-3227.	3.8	27
67	Design and synthesis of hierarchically porous MnO2/carbon hybrids for high performance electrochemical capacitors. Journal of Colloid and Interface Science, 2015, 438, 61-67.	9.4	27
68	Sintering behavior of garnetâ€type Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ in Li ₂ CO ₃ atmosphere and its electrochemical property. International Journal of Applied Ceramic Technology, 2017, 14, 921-927.	2.1	27
69	Near net size sintering of porous cordierite ceramics with excellent properties. Journal of Alloys and Compounds, 2020, 826, 154121.	5.5	26
70	Poly(amic acid)–clay nacrelike composites prepared by electrophoretic deposition. Journal of Materials Research, 2008, 23, 1706-1712.	2.6	25
71	Effect of Heating Rate on Spark Plasma Sintering of a Nanosized β-Si3N4-Based Powder. Journal of the American Ceramic Society, 2011, 94, 1182-1190.	3.8	25
72	Fabrication and characterization of ceramic coatings with alumina–silica sol-incorporated α-alumina powder coated on woven quartz fiber fabrics. Ceramics International, 2013, 39, 6041-6050.	4.8	25

#	Article	IF	CITATIONS
73	An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene) Tj ETQq2 2021, 492, 229672.	l 1 0.7843 7.8	314 rgBT / 25
74	Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery. Small, 2022, 18, e2106142.	10.0	25
75	Preparation and characterization of ZrB2-SiC ultra-high temperature ceramics by microwave sintering. Frontiers of Materials Science in China, 2010, 4, 276-280.	0.5	24
76	Preparation and characterization of monodispersed spherical Fe2O3@SiO2 reddish pigments with core–shell structure. Journal of Advanced Ceramics, 2019, 8, 39-46.	17.4	24
77	Dual interface layers for solid-state Li metal battery with low interfacial resistance and small polarization based on garnet electrolyte. Electrochimica Acta, 2020, 330, 135352.	5.2	24
78	Influence of Conductive Nanoâ€TiC on Microstructural Evolution of Si ₃ N ₄ â€Based Nanocomposites in Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 959-967.	3.8	22
79	Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes. Frontiers of Materials Science, 2015, 9, 234-240.	2.2	22
80	In-situ synthesis and properties of porous cordierite ceramics with adjustable pore structure. Ceramics International, 2020, 46, 14808-14815.	4.8	22
81	Seed assisted in-situ synthesis of porous anorthite/mullite whisker ceramics by foam-freeze casting. Ceramics International, 2021, 47, 11193-11201.	4.8	22
82	Influence of sintering additives on Li + conductivity and electrochemical property of perovskite-type Li 3/8 Sr 7/16 Hf 1/4 Ta 3/4 O 3. Electrochimica Acta, 2017, 234, 1-6.	5.2	21
83	Synthesis of bambooâ€like SiC whiskers from waste silica fume. Crystal Research and Technology, 2014, 49, 290-297.	1.3	20
84	YSZ fiber-reinforced porous YSZ ceramics with lowered thermal conductivity: Influence of the sintering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 76-81.	5.6	20
85	Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics. Scientific Reports, 2014, 4, 6823.	3.3	20
86	Synthesis and growth of anorthite crystal during in situ preparation of porous anorthite ceramics by foamâ€gelcasting. International Journal of Applied Ceramic Technology, 2017, 14, 957-962.	2.1	20
87	Li-ion conductivity and stability of hot-pressed LiTa2PO8 solid electrolyte for all-solid-state batteries. Journal of Materials Science, 2021, 56, 2425-2434.	3.7	20
88	Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries. Chemical Engineering Journal, 2022, 442, 136154.	12.7	20
89	Synthesis of aluminum-doped mesoporous zirconia with improved thermal stability. Microporous and Mesoporous Materials, 2014, 186, 1-6.	4.4	19
90	A study on the orientation relationship between Ti3SiC2 and TiC grains. Materials Letters, 2002, 57, 106-109.	2.6	18

#	Article	IF	CITATIONS
91	Simple synthesis of a double-shell hollow structured MnO ₂ @TiO ₂ composite as an anode material for lithium ion batteries. RSC Advances, 2017, 7, 46263-46270.	3.6	18
92	Molten Lithium-Brass/Zinc Chloride System as High-Performance and Low-Cost Battery. Matter, 2020, 3, 1714-1724.	10.0	17
93	Synthesis of TiO2 hollow spheres with tunable pore structure and enhanced photocatalytic activity. Ceramics International, 2015, 41, 14615-14620.	4.8	16
94	Enhanced antiâ€deliquescent property and ultralow thermal conductivity of magnetoplumbiteâ€type LnMeAl ₁₁ O ₁₉ materials for thermal barrier coating. Journal of the American Ceramic Society, 2018, 101, 1095-1104.	3.8	16
95	Improved Resistance to Damage of Silicon Carbideâ€Whiskerâ€Reinforced Silicon Nitrideâ€Matrix Composites by Whiskerâ€Oriented Alignment. Journal of the American Ceramic Society, 2001, 84, 161-164.	3.8	15
96	Synthesis and magnetoelectric effect of composites with CoFe2O4-epoxy embedded in 3–1 type porous PZT ceramics. Ceramics International, 2015, 41, 11080-11085.	4.8	15
97	Facile synthesis of well-dispersed CeO ₂ –CuO _x composite hollow spheres with superior catalytic activity for CO oxidation. RSC Advances, 2015, 5, 95133-95139.	3.6	15
98	Manganous-Manganic Oxide@Carbon Core-Shell Nanorods for Supercapacitors with High Cycle Retention. ECS Journal of Solid State Science and Technology, 2016, 5, M5-M11.	1.8	15
99	Synthesis and chromatic properties of zircon encapsulated ceramic black pigment with carbon sphere as carbon source. Journal of the European Ceramic Society, 2018, 38, 2218-2227.	5.7	15
100	The rational design of sandwich-like MnO ₂ –Pd–CeO ₂ hollow spheres with enhanced activity and stability for CO oxidation. Nanoscale, 2019, 11, 6776-6783.	5.6	15
101	Facile synthesis of multi-shelled MnO2–Co3O4 hollow spheres with superior catalytic activity for CO oxidation. Ceramics International, 2021, 47, 18411-18416.	4.8	15
102	Preparation and mechanical properties of ZrB2-based ceramics using MoSi2 as sintering aids. Frontiers of Materials Science in China, 2010, 4, 271-275.	0.5	14
103	Grain Orientation and Domain Configuration in 3â€1 Type Porous <scp>PZT</scp> Ceramics with Ultrahigh Piezoelectric Properties. Journal of the American Ceramic Society, 2015, 98, 2700-2702.	3.8	14
104	MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials. Frontiers of Materials Science, 2018, 12, 354-360.	2.2	14
105	Hollow-grained "Voronoi foam―ceramics with high strength and thermal superinsulation up to 1400†°C. Materials Today, 2021, 46, 35-43.	14.2	14
106	Preparation of acrylic anodic electrophoretic resin/clay nanocomposite films by water-based electrodeposition. Composites Science and Technology, 2008, 68, 880-887.	7.8	13
107	Microstructure and properties of porous anorthite/mullite whiskers ceramics with high porosity. International Journal of Applied Ceramic Technology, 2020, 17, 2104-2113.	2.1	13
108	Effects of Mullite Content on the Properties and Microstructure of Porous Anorthite/Mullite Composite Ceramics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1095-1100.	1.3	13

#	Article	IF	CITATIONS
109	A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by laser ablation. Journal of Power Sources, 2018, 378, 362-368.	7.8	12
110	A monocrystal Fe ₃ O ₄ @ultrathin N-doped carbon core/shell structure: from magnetotactic bacteria to Li storage. Journal of Materials Chemistry A, 2019, 7, 20899-20904.	10.3	12
111	High Li+-conductive perovskite Li3/8Sr7/16Ta3/4Zr1/4O3 electrolyte prepared by hot-pressing for all-solid-state Li-ion batteries. Solid State Ionics, 2019, 338, 1-4.	2.7	12
112	Preparation of near net size porous alumina alcium aluminate ceramics by gelcastingâ€poreâ€forming agent processs. Journal of the American Ceramic Society, 2020, 103, 4602-4610.	3.8	12
113	Effect of YSZ fiber addition on microstructure and properties of porous YSZ ceramics. Journal of Materials Science, 2012, 47, 6326-6332.	3.7	11
114	Oxidation Behavior of SiC Plateletâ€Reinforced ZrB ₂ Ceramic Matrix Composites. International Journal of Applied Ceramic Technology, 2012, 9, 178-185.	2.1	11
115	Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2016, 27, 5533-5542.	2.2	11
116	Facile synthesis of well-defined CeO2 hollow spheres with a tunable pore structure. Ceramics International, 2016, 42, 6088-6093.	4.8	11
117	Carbon encapsulated Fe ₃ O ₄ nanospheres with high electrochemical performance as anode materials for Liâ€ion battery. International Journal of Applied Ceramic Technology, 2017, 14, 938-947.	2.1	11
118	In Situ Electrode Stress Monitoring: An Effective Approach to Study the Electrochemical Behavior of a Lithium Metal Anode. ACS Applied Energy Materials, 2021, 4, 3993-4001.	5.1	11
119	Complex Impedance Analysis on the Orientation Effect of Whiskers in Oriented Silicon Carbide Whisker/Silicon Nitride Composites. Journal of the American Ceramic Society, 2000, 83, 2689-2692.	3.8	10
120	Fabrication of porous silver/titania composite hollow spheres with enhanced photocatalytic performance. Materials Chemistry and Physics, 2015, 149-150, 1-6.	4.0	10
121	Correlation between the photocatalysis and growth mechanism of SnO ₂ nanocrystals. Journal Physics D: Applied Physics, 2020, 53, 154005.	2.8	10
122	Improved sinterability of SiC(w)/Si3N4 composites by whisker-oriented alignment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 319-325.	5.6	9
123	Formation of molybdenum–cobalt sulfide by one-step hydrothermal reaction for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 13703-13708.	2.2	9
124	Highly elastic and low resistance deformable current collectors for safe and high-performance silicon and metallic lithium anodes. Journal of Power Sources, 2021, 511, 230418.	7.8	9
125	Preparation and characteristics of highly porous BN-Si3N4 composite ceramics by combustion synthesis. Journal of the European Ceramic Society, 2022, 42, 4835-4845.	5.7	9
126	Indentation Deformation and Microcracking in βâ€ <scp><scp>Si</scp></scp> ₃ <scp><scp>N</scp>4â€Based Nanoceramic. Journal of the American Ceramic Society, 2012, 95, 1421-1428.</scp>	3.8	8

#	Article	IF	CITATIONS
127	Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 2012, 6, 79-86.	2.2	8
128	Microstructure and Highâ€ŧemperature Oxidation Behavior of <scp><scp>Ti</scp></scp> <scp>Xi/scp></scp> &scp>AlC ₂ / <scp><scp>W</scp></scp> Composites. Journal of the American Ceramic Society, 2013, 96, 584-591.	3.8	8
129	Honeycomb-alumina supported garnet membrane: Composite electrolyte with low resistance and high strength for lithium metal batteries. Journal of Power Sources, 2015, 281, 399-403.	7.8	8
130	Porous acicular mullite ceramics fabricated with in situ formed soot oxidation catalyst obtained from waste MoSi2. Ceramics International, 2017, 43, 9815-9822.	4.8	8
131	SrTiO3/TiO2 heterostructure nanowires with enhanced electron-hole separation for efficient photocatalytic activity. Frontiers of Materials Science, 2019, 13, 342-351.	2.2	7
132	Submicronic spherical inclusion black pigment by doubleâ€shell reaction sintering. Journal of the American Ceramic Society, 2020, 103, 1520-1526.	3.8	7
133	Tailored lithium metal/polymer electrolyte interface with LiTa2PO8 fillers in PEO-based composite electrolyte. Rare Metals, 2022, 41, 2826-2833.	7.1	7
134	THERMAL-ELASTIC BEHAVIORS OF STAGGERED COMPOSITES. International Journal of Applied Mechanics, 2009, 01, 569-580.	2.2	6
135	A specially designed Li–H2O2 semi-fuel cell: A potential choice for electric vehicle propulsion. RSC Advances, 2014, 4, 18894.	3.6	6
136	Hierarchically porous YSZ hollow spheres with ultralow thermal conductivity. Materials Research Bulletin, 2014, 57, 79-84.	5.2	6
137	Defocused laser ablation process—A high-efficiency way to fabricate MoO3Mo integrative anode with excellent electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds, 2019, 787, 295-300.	5.5	6
138	Near net shape fabrication of porous cordierite by combination of foam gelâ€casting and freezeâ€drying. International Journal of Applied Ceramic Technology, 2021, 18, 2121-2131.	2.1	6
139	Fabrication of Low Density High Strength Porous Mullite Ceramics by Tert-butyl Alcohol-based Gelcasting Process. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 1173-1177.	1.3	6
140	Exploring the Formation Mechanism of Deformation Twins in CrMnFeCoNi High Entropy Alloy. Acta Metallurgica Sinica (English Letters), 2022, 35, 1275-1280.	2.9	6
141	Microwave dielectric properties of (0.75ZnAl ₂ O ₄ –0.25TiO ₂)–MgTiO ₃ ceramics prepared using digital light processing technology. Journal of the American Ceramic Society, 2022, 105, 4191-4199.	3.8	6
142	Thermal shock behavior of ZrB2-SiC ceramics with different quenching media. Frontiers of Materials Science, 2013, 7, 184-189.	2.2	5
143	Porous YSZ Ceramics Reinforced by Different Kinds of Fibers. International Journal of Applied Ceramic Technology, 2014, 11, 824-831.	2.1	5
144	One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity. Frontiers of Materials Science, 2016, 10, 15-22.	2.2	5

#	Article	IF	CITATIONS
145	Design and Synthesis of Rattle-type Au@MnO ₂ Hollow Nanospheres as Catalysts for CO Oxidation. Chemistry Letters, 2017, 46, 876-878.	1.3	5
146	Binderâ€free carbonâ€coated nanocotton transition metal oxides integrated anodes by laser surface ablation for lithiumâ€ion batteries. Surface and Interface Analysis, 2019, 51, 874-881.	1.8	5
147	Surface Coating on a Separator with a Reductive Solid Li-Ion Conductor for Dendrite-Free Li-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 8621-8628.	5.1	5
148	Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer. Journal of Power Sources, 2022, 540, 231659.	7.8	5
149	Preparation and mechanical properties of laminated zirconium diboride/molybdenum composites sintered by spark plasma sintering. Frontiers of Materials Science in China, 2009, 3, 273-280.	0.5	4
150	Au/CeO ₂ hollow nanospheres with enhanced catalytic activity for <scp>CO</scp> oxidation. International Journal of Applied Ceramic Technology, 2017, 14, 908-914.	2.1	4
151	Rapid Assembly Processes of Ordered Inorganic/Organic Nanocomposites. , 0, , .		3
152	Electrochemical synthesis and properties of layer-structured polypyrrole/montmorillonite nanocomposite films. Journal of Materials Research, 2010, 25, 658-664.	2.6	3
153	Effect of alumina fiber content on pore structure and properties of porous ceramics. International Journal of Applied Ceramic Technology, 2019, 16, 814-819.	2.1	3
154	Preparation of YSZ porous ceramics with precise porosity control. International Journal of Applied Ceramic Technology, 2020, 17, 974-979.	2.1	3
155	Highly Dispersed Pt ₃ Co Nanocatalysts Embedded in Porous Hollow Carbon Spheres with Efficient Electrocatalytic O ₂ -Reduction and H ₂ -Evolution Activities. ACS Applied Energy Materials, 2022, 5, 4496-4504.	5.1	3
156	Optimal Synthesis of Manganese Oxide/Carbon Sphere Hybrids through a Chemical Deposition Process. ECS Journal of Solid State Science and Technology, 2015, 4, M46-M50.	1.8	2